Implant-Supported Fixed Restorations for the Partially Edentulous Arch

By Prof. Gregor-Georg Zafiropoulos & Assoc. Prof. Moosa Abuzayda, UAE

When restoring a partially edentulous arch with an implant-retained fixed restoration (fixed partial denture, FPDs), several procedural steps may influence the fit and function of the framework. These include: 1) the correct transfer of the implant position, 2) the correct transfer of vertical height and maintenance of the maxillo-mandibular relationship, 3) the determination of an optimal occlusion, and 4) the selection of implant abutments with the correct shaping and angulation. The described method allows the accurate transfer of the implant position and the recording of the interocclusal relationship using transfer key and electroformed gold copings.

Figure 1. Impression system. L: titanium impression post; B: impression system in situ.

Case

A 62-year-old man with a partial edentulism of the left posterior mandible presented for implant placement and prosthetic restoration. Teeth #21–26 had been extracted due to root caries 5 years previously. Two screw cylinder implants (straight line, 11.5-mm length; Dentegris, Duisburg, Germany) were placed manually at a torque of 35 Ncm in the areas of teeth #19 and #21, following a two-step surgical protocol.

At the next clinical session, the implant abutments were mounted on the implants using the transfer key and torque to 35 Nm. The AGCs were placed on the abutments (Fig. 5) and the fit of the abutments was assessed with x-rays (Fig. 6). The mock-up from clear PMMA was placed over the electroformed copings, and the occlusion was checked (Fig. 7). A bite registration was made and a final impression was taken over the electroformed copings and the mock-up using a polyether material (Impregum, 3M ESPE, St. Paul, MN, USA) and a light-curing resin (tray pink translucent; Omnident, Rodgau, Germany; Fig. 09B). After the impression had been taken, the abutments were left in the patient’s mouth and the temporary FPD from colored PMMA was placed on them using temporary cement (TempBond; Kerr, Orange, CA, USA; Fig. 08B).

In the dental laboratory, a final master cast was fabricated using system-specific implant analogs and a new set of TImPs (Fig. 08A). The cast was used to fabricate a resin transfer key (pattern resin, GC America, Inc., Alsip, IL) and connected to each other using a light-curing resin (Irresistible; Dentsply, Fig. 9). For impression, a polyether material (Impregum, 3M ESPE, St. Paul, MN, USA) was used. To ensure that the titanium impression posts remained in the exact same position, they were left on the implants until the interocclusal relationship was recorded (1 day later).

The master cast was fabricated using system-specific implant analogs and a new set of TImPs (Fig. 2A). The cast was used to fabricate a final cast. For fabrication of a transfer key, resin copings were made on top of the TImPs (pattern resin, GC America, Inc., Alsip, IL, USA) and connected to each other using a light-curing resin (Irresistible; Dentsply). The transfer key was placed on TImPs in patient’s mouth and a bite registration was made in centric occlusion using pattern resin (Fig. 08B). The TImPs were then removed from the implants and the healing abutments were replaced. The casts were placed into the articulator using this transfer key and bite record. In the case presented here, customizable abutments (PTIR, platinum-iridium; Dentegris) were used casted with CoCr alloy (Fig. 09A). Over the implant abutments, were fabricated: 1) a resin transfer key (pattern resin, GC America, Inc., Alsip, IL) and 2) electroformed gold copings (AGCs; AGC Galvanogold, 0.23-mm thickness; Wieland, Pfalzheim, Germany; Fig. 09A,B). The master cast with the mounted implant abutments and AGCs in place was scanned, and a mock-up from clear poly(methyl methacrylate) (PMMA; Zest, Wieland, Pfalzheim, Germany) as well as a temporary FPD from colored PMMA were milled (Fig. 4).

At the next clinical session, the implant abutments were mounted on the implants using the transfer key and torqued to 35 Nm. The AGCs were placed on the abutments (Fig. 5) and the fit of the abutments was assessed with x-rays (Fig. 6). The mock-up from clear PMMA was placed over the electroformed copings, and the occlusion was checked (Fig. 7). A bite registration was made and a final impression was taken over the electroformed copings and the mock-up using a polyether material (Impregum, 3M ESPE, Fig. 08A). After the impression had been taken, the abutments were left in the patient’s mouth and the temporary FPD from colored PMMA was placed on them using temporary cement (TempBond; Kerr, Orange, CA, USA; Fig. 08B).

In the dental laboratory, a final master cast was made using the mock-up and electroformed copings to transfer the position of the gold implant abutments (Fig. 09A). The metal framework was milled from a CoCr alloy (Zest, Wieland, Pfalzheim, Germany) and veneered with porcelain (Vintage MP; Shofu, Ratingen, Germany; Fig. 09B). After this, the gold copings were fixed into the framework (AGC Ceram, Wieland, Pfalzheim, Germany). The final FPD was fixed over the implant abutments using a temporary cement.
Several clinical steps significantly influence the success of the restoration, including the accurate recording of the interocclusal relationship, the transfer of the correct implant position, occlusal forces and the passive fit of the framework. In the case described in this report, customised implant abutments, prefabricated titanium can also be used. However, customised abutments (casted or CAD/CAM milled) allowed the achievement of more ideal angulation, height, diameter, and shape. Such optimization improved the ability to address problems related to interocclusal and interproximal distances, implant angulation, and related soft tissue responses.

Although this report has described the fabrication of a three-unit FPD supported by two dental implants, this technique can also be used for the rehabilitation of larger partially edentulous areas with multiple-unit FPDs retained on more than two implants (Fig 10). The abutments were not removed after mounting and tonguing until the final restoration was fitted and placed. Thus, the position of the abutments remained unchanged, eliminating errors that might occur during repeated attachment of the abutments for various test fittings of the restoration. A proper fit of a restoration requires the accurate transfer of the interocclusal implant position to the master cast and a precise fit to the abutment can be achieved with AGCs.20

The use of a mock-up allows not only the evaluation of FPD fit, occlusion, and shape but also the fabrication of an exact final master cast. Because the AGCs remain in a fixed position while impressions are taken, further, any necessary change in shape or occlusion can also be made on the mock-up and transferred to the final denture.

Although this technique requires one or two more clinical treatment sessions than other traditional techniques, this does not represent a real disadvantage given the superiority of the final result. The disadvantages of this method include the higher cost and the need for a very skilled laboratory technician.

Dental Tribune Online: How have ceramic implants progressed since their initial development in the late 1960s?

Dr. Sammy Noumibiis: Ceramic implants were born out of a desire for a material that would appear similar to natural teeth and be just as functional. They were a response to early concerns about the long-term stability and health effects of metal alloys being embedded in bone and exposed to the oral environment. Early ceramic implants were mostly made of a single ceramic compound, such as alumina or zirconia. They were all monocrystalline in composition and were initially found to be vulnerable to functional stresses or premature structural breakdown.

Alumina was prone to fracture and zirconia displayed low temperature degradation and poor suitability to the high humidity in the oral environment.

Starting in the mid-1980s, advances in manufacturing and technology led to the development of ceramic composites. These composites were made by combining specific and different bioceramics that were known to have unique physical and chemical properties. These advances created new and more structurally stable polycrystalline bioceramics with greatly improved functional properties. This is how we developed dental implants that are made of ceramic composites, such as alumina.-toughened zirconia and hot isostatically pressed yttria-stabilized zirconia.

In terms of design, the early implants, for the most part, were one-piece designs. This was because during the initial testing of the implants, structural failures migrated to the connection area between the implants and the abutments. Around 2014, ceramic implant manufacturers started releasing two-piece cemented zirconia implants. This signaled a new era in ceramic implantology because the flexibility that was once only available with titanium implants had finally come to ceramic implants. More recently, two-piece, screw-retained ceramic implants with metal and metal-free screws have been developed, no longer limiting them to cementable restorative options.

Interview: “The future of ceramic implants is really bright for many reasons”

By DTI

When it comes to materials used in implantology, titanium and titanium alloys have always been the material of choice. However, recent advancements in the functionality of ceramic implants have positioned them as a viable, metal-free alternative with aesthetic properties and greater aesthetic appeal. The International Academy of Ceramic Implantology (IACI) is an association entirely dedicated to ceramic and metal free alternatives to metal-based implants. Dental Tribune Online spoke with the President and co-founder of the IACI, Dr. Sammy Noumibis, about the association’s mission, as well as current trends in the field of ceramic implantology.

When it comes to materials used in implantology, titanium and titanium alloys have always been the material of choice. However, recent advancements in the functionality of ceramic implants have positioned them as a viable, metal-free alternative with aesthetic properties and greater aesthetic appeal. The International Academy of Ceramic Implantology (IACI) is an association entirely dedicated to ceramic and metal free alternatives to metal-based implants. Dental Tribune Online spoke with the President and co-founder of the IACI, Dr. Sammy Noumibis, about the association’s mission, as well as current trends in the field of ceramic implantology.

What are some of the issues associated with metal implants, and are these negated with ceramic implants?

Metal implants are well researched, documented and have been very successful. There is a multitude of implants on the market and with that has come along different manufacturing protocols. As a result, we have observed a steady increase in alloy elements added to titanium in order to improve its physical properties. The problems begin when the metal implant, highly alloyed or not, is subjected to functional stresses, galvanism, body fluids and the harsh
oral environment. Gallium is the most important, but often ignored problem. All dentists are taught in dental school not to mix dissimilar metals in the oral cavity—nevertheless, this rule is consistently violated with implants. We have implants connected to all kinds of alloyed abutments, screws, crowns and copings even when they come from the same manufacturer. Gallenic corrosion occurs and studies have shown that in the process, metal ions get released into the surrounding soft tissue, bone, lymph nodes and even distant organs. Corrosion also come from mechanichal functional stresses that induce cracks and pitting of the metal and breakdown of existing layers. Zirconia ceramic implants, alternately, do not conduct electricity or heat, are non-corrosive and retain very little biofilm and plaque in comparison to metals. Furthermore, studies have also shown better vasculatization, soft-tissue health and apposition with zirconia in comparison to titani- um.

What is the success rate of ceramic implants? Ceramic implants today, in my experience and for many fellow ceramic implantologists, have the same success rate as titanium implants. They are now as versatile as metal implants thanks to the evolution in design, surface enhancement protocols and biomaterial improvements. Various treatment modalities are applicable with ceramic implants. Immediate placement, immediate temporary, full arch and full-mouth rehabilitation can be performed with excellent and predictable outcomes. I, however, believe that adopting ceramic implantology should be accompanied by a minimum amount of training or shadowing from an experienced clinician, even if one has experience with titanium implants.

Given that ceramic implants are a viable alternative to titanium, why do many dental professionals still regard them with skepticism? The early stages of ceramic implants were so difficult and controversial so much so that a stigma regarding their viability and functionality still persists. I would rather ask this question: “Why aren’t there more dentists placing ceramic implants despite evidence of their viability?” This is the case for a few reasons. Metal implants have a very strong background and the cost of manufacturing zirconia is still pretty high. All of the major implant manufacturers (with the exception of Straumann) do not have a ceramic implant on the market, let alone in development. Furthermore, the cost of production and pricing of titanium implants have decreased, making them more accessible to dentists and patients.

I would also add that dental materials are evolving very fast and dental schools and graduate programs are lagging in educating their students on the capabilities and applications of these new materials. I often have conversations with dental academicians, professors and new graduates and unfortunately, for the most part, there is a distorted view and misunderstanding of zirconia. To many, accepting zirconia as a restorative material is an easier exercise than recognizing it as an implant and implantable material, but I have seen this changing rapidly over the last couple of years.

Where do you see the field of ceramic implantology heading? The future of ceramic implants is really bright for many reasons. Patients increasingly ask for safer, less invasive solutions, as well as metal-free alternatives for teeth repair or replacement. Dental attitudes and understanding of zirconia and bioceramics are slowly, but steadily evolving, with a definite shift toward biological and inert materials. There has also been a shift in the healthcare industry towards wellness, wellbeing and providing therapies that have little to no side effects. As I previously mentioned, some of the largest implant manufacturers in the implant industry are incorporating or have already adopted ceramic implants in their product line, either by development or by corporate acquisitions. A quiet, but major shift is happening in implant dentistry.

What prompted you to establish the IAOCI? The IAOCI was created to provide a platform when ceramic implant adopters and believers can exchange ideas, experiences and engage in clinical and scholarly conversation. The other primary objective was to reach out and help our colleagues better understand bioceramics and realize that metal-free implants are a viable and proven alternative. With the help of our supporters and through our other educational activities, we plan to establish a research fund in 2017 to support graduate dental students and residents who elect to conduct projects involving ceramic implants.

The IAOCI will be hosting its Sixth Annual World Congress in Miami, Florida. What can dental professionals expect from the event? We are fortunate, honored and privileged to have Prof. Sami Sandhaus, a pioneer and forefather of ceramic implantology, as our keynote speaker. The theme of our congress in February 2017 is “Evidence-Based Ceramic Implantology – Where Are We Today?” For three days, the congress will host a gathering of the world’s foremost authorities in ceramic implantology and dental bioceramics. Our speakers will share data gathered over 10, 15 and even 20 years regarding ceramic implants. They will also cover zirconia as an implant material, its behavior under function, its biocompatibility, immunocompatibility and superior hygiene properties, and the lack of galvanic activity, corrosion and ion release in ceramic implants. We will also be offering surgical and prosthetic workshops on implant systems from the top three industry players. This is a great opportunity for current users, non-users and even skeptics to come and listen to 15 world-renowned and published experts present and share their experiences and expertise around ceramic implants.

Thank you for the interview.
How do you deal with implant failure?
Implant failure is a failure for both the dentist and the patient. It is a headache for dentists, and in the worst case, patients will not be able to enjoy a beautiful smile. Periodontal treatment and oral hygiene are important before and after every implant placement. Before and after surgery, I usually explain oral hygiene and motivate my patients. Just recently, I placed an implant in an 84-year-old patient. Six months after placement, I have seen improvement owing to interdental brushes.

Oral hygiene treatment is mostly taken care of by dental hygienists. Most larger clinics employ at least one dental hygienist and it seems that Dubai citizens make extensive use of them. Is there a good partnership between hygienists and dentists? There is very good cooperation. I am a good partnership between the dentist and dental hygienist then work together. In today’s fast-paced world, we need to take care of individual prophylaxis.

Dr. Jason Kim, USA
Diplomate, American Board of Prosthodontics
Fellow, American Academy of Implant Dentistry

Dr. Robert Miller, USA
Board Certfied by the American Board of Oral Implantology
Member, AAID Maxi Course

Dr. Patrick Tardev, France
Fellow AAID course, Fellow European Academy of Implant Dentistry

Dr. Stuart Orton-Jones, UK
Fellow, Academy, Fellow, American Academy of Implant Dentistry

Dr. Stuart Miller, USA
Member, Alabama Implant Study Group
Founder Member, The Pankey Association

Dr. Stuart Orton-Jones, UK
Fellow, Academy, Fellow, American Academy of Implant Dentistry

Dental Tribune Middle East & Africa Edition | 2/2017
D4

New implant releases antimicrobial drugs to fight infections

By DTI

LEUVEN, Belgium: Bacterial and fungal pathogens can form a biofilm on dental implants that is resistant to antimicrobial drugs like antibiotics. As a result, these implants pose a significant risk of a multifactorial infection. A multidisciplinary team of researchers at KU Leuven in Belgium has developed a dental implant that gradually releases such drugs from an integrated reservoir. The antimicrobial liquid could help prevent and fight infections.

“Our implant has a built-in reservoir underneath the crown of the tooth,” explained lead author Dr. Kaut De Cremer. “A cover screw makes it easy to fill this reservoir with antimicrobial drugs. The implant is made of a porous composite material, so that the drugs gradually diffuse from the reservoir to the outside of the implant, which is in direct contact with the bone cells. As a result, the bacteria can no longer form a biofilm.”

In the laboratory, the implant was subjected to various tests for use with chlorhexidine, a universal mouthwash with a powerful antimicrobial effect. The study shows that the streptococcus mutans bac-

terium, a major contributor to tooth decay, is prevented from forming a biofilm on the surface of the implant when the reservoir is filled with the mouthwash. Furthermore, biofilms that were grown beforehand on the implant could be eliminated in the same way. This indicates that the implant would be effective in terms of both preventing and curing infections. This study titled “Controlled release of chlorhexidine from a mesoporous silica containing macroporous titanium dental implant prevents microbial biofilm formation,” was published online in January in Volume 33 of the European Cells and Materials Journal.