_earn C.E. credit
From everyday dentistry to advanced photoacoustic endodontic applications

_trends
Diode lasers for periodontal treatment: The story continues

_case report
Technology-enhanced caries detection and treatment options
Easy as 1, 2, 3.

Three good reasons to add the Picasso Lite to your practice today.

1 for $2,495

$4,000 Savings

- Box of Tips $103.75 value
- ICL Laser Certification $495.00 value
- Soft Tissue Laser Certification $495.00 value
- Everything is Marketing by Fred Joyal $24.95 value
- iPod app $49.99 value
- Hands on Seminar $495.00 value
- Practice Management and Practice Analysis $1,500.00 value

2 for $4,495

$4,700 Savings

- 2 Box of Tips $207.50 value each
- ICL Laser Certification $495.00 value
- Soft Tissue Laser Certification $495.00 value
- Everything is Marketing by Fred Joyal $24.95 value
- iPod app $49.99 value
- Hands on Seminar $495.00 value
- Practice Management and Practice Analysis $1,500.00 value

3 for $6,995

$5,200 Savings

- 3 Box of Tips $311.25 value each
- ICL Laser Certification $495.00 value
- Soft Tissue Laser Certification $495.00 value
- Everything is Marketing by Fred Joyal $24.95 value
- iPod app $49.99 value
- Hands on Seminar $495.00 value
- Practice Management and Practice Analysis $1,500.00 value

Pick up your Picasso(s) today!
Call 866.999.2635
or visit amdlasers.com to order

* Offer Expires 12/31/2011 USA Orders Only. Cannot be combined with any other existing offers. While supplies last © 2011 AMD LASERS. All Rights Reserved.
NEW

Bendable Disposable Tips

We now offer bendable disposable tips, providing better control and access with your Picasso laser.

“**You could pay more but you won’t get more. This should be your new laser.**”

Dr. David Hornbrook

iCLE Laser Certification

AMD LASERS provides laser certification with every purchase of a Picasso laser. Certification is provided through DVD, online, and hands-on training, providing you the learning experience that you are looking for.

“This Picasso is a remarkable, affordable instrument for soft-tissue surgery and a must-have in my esthetic practice.”

Dr. Larry Rosenthal

**User friendly, priced perfectly.”

Dr. Louis Malcmacher

Teeth Whitening

Picasso delivers a brighter smile in just one visit with state-of-the-art dental laser technology and advanced whitening gel.

iPad App

AMD LASERS is the only laser company with an iPad app. This app provides you all the resources you need for your Picasso at your fingertips. For a limited time, if you purchase three Picasso Lites, we will give you an iPad with our app for FREE!

MASTERS OF LASER DENTISTRY

Join our team of clinical educators and learn first-hand about the enormous benefits of diode lasers in an all-new learning environment. By the end of the course, participants will gain insight into laser physics, theory, safety, the essential procedures you’ll want to master with your diode, and how to implement and market the laser effectively to your patients. To learn more visit www.amdlasers.com/masters
Expand your horizons with laser

The amount of new information available in the dental field about new products, techniques and research data is astounding. Running a practice and seeing patients leaves little time for catching up on the latest clinical news and product information. Thus, we hope laser will not only be a welcome respite for those rare chunks of time you can devote to leisurely reading, but one that provides a practical return on your investment by providing information that you can actually put to immediate use.

For this issue of the U.S. edition of laser, we’ve assembled a collection of articles from some of the most respected names in laser dentistry. These expert clinicians are sharing their knowledge and expertise with you.

Within this issue you can read a report from Dr. Fay Goldstep and Dr. George Freedman on using diode lasers for periodontal treatment; an article by Dr. Michele Baffi Diniz, Dr. Jonas Almeida Rodrigues and Dr. Adrian Lussi on technology-enhanced caries detection and treatment options; a case report by Dr. Gabriele Schindler-Hultsch on a laser-assisted frenectomy in pediatric dentistry; an article by Dr. Giuseppe Iaria, Dr. Rolando Crippa, Dr. Giovanni Olivi, Dr. Matteo Iaria and Dr. Stefano Benedicenti on the use of the Er,Cr:YSGG and Er:YAG lasers in restorative dentistry; and a case report by Dr. Georg Bach on a diode-laser-assisted combination therapy of a lip haemangioma.

But there’s more. Every issue of laser magazine also contains a C.E. component. So, by reading the article on periodontal surgery by Dr. Elena Speranza Moll, and the article on the use of dual wavelength lasers by Dr. Lawrence Kotlow, Dr. Enrico DiVito and Dr. Giovanni Olivi, and then taking a short online quiz about these articles at www.DTStudyClub.com, you will gain one ADA CERP-certified C.E. credit.

Keep in mind that because laser is a quarterly magazine, you can actually chisel four C.E. credits per year out of your already busy life without the lost revenue and time away from your practice.

To learn more about how you can take advantage of this C.E. opportunity, visit www.DTStudyClub.com. Annual subscribers to the magazine ($50) need only register at the Dental Tribune Study Club website to access these C.E. materials free of charge. Non-subscribers may take the C.E. quiz after registering on the DT Study Club website and paying a nominal fee.

I know that taking time away from your practice to pursue C.E. credits is costly in terms of lost revenue and time, and that is another reason laser is such a valuable publication.

I hope you enjoy this issue of laser and that you get the most out of it.

Sincerely,

Torsten Oemus
Publisher
Technology for Medicine

LIGHTWALKER

Hard & Soft All Tissue Laser

Visit Us at the
American Dental
Association (ADA)
Booth #3142
October 10-12, 2011
Las Vegas, NV

Greater New York
Dental Meeting
Booth #4010
November 27-30, 2011
New York, NY

Visit us & receive the New
LightWalker Tote Bag!

949.276.6650
t4med.com
C.E. articles

08 ER, CR: YSGG laser-assisted GTR in periodontal surgery
 _Elena Speranza Moll, DDS

13 From everyday dentistry to advanced photoacoustic endodontic applications (PIPS): Er:YAG & Nd:YAG dual-wavelength laser
 _Lawrence Kotlow, DDS, Enrico DiVito, DDS & Giovanni Olivi, MD, DDS

case reports

18 Diodoe lasers for periodontal treatment: The story continues
 _Fay Goldstep, DMD & George Freedman, DDS

27 Technology-enhanced caries detection and treatment options
 _Michele Baffi Diniz, DDS, MSc, PhD, Jonas Almeida Rodrigues, DDS, MSc, Dr med dent, PhD & Prof Adrian Lussi, Dr med dent, diplom chem

32 Laser-assisted frenectomy in pediatric dentistry
 _Gabriele Schindler-Hultzsch, MSc, DDS

user report

36 Use of the ER, Cr: YSGG and Er: YAG lasers in restorative dentistry
 _Giuseppe Iaria, Dr Prof, DMD, DDS, Rolando Crippa, Dr Prof, DMD, DDS, Giovanni Olivi, Dr Prof, DMD, DDS, Matteo Iaria, DDS (expected) & Stefano Benedicenti, Prof, DDS

clinical technique

42 Diode-laser-assisted combination therapy of a lip haemangioma
 _George Bach, Dr med dent

events

47 Yankee Dental Congress 2012: ‘Ride the Wave to Success in Dentistry’

industry

48 Philips Discus Dental: NV Microlaser

about the publisher

49 submissions
50 imprint

on the cover
Cover image provided by Technology4Medicine
The Dual Wavelength waterlase® iPlus™
Advancing Laser Technology to Its Ultimate

EASY TO USE
GRAPHICAL USER INTERFACE

For example, performing a Class I Cavity Prep, the iPlus® is as easy as 1,2,3...

Step 1 Select “Restorative” from the first screen
Step 2 Choose “Class I” from the next screen that appears automatically
Step 3 Specify any other concerns such as patient sensitivity or bond strength

That’s it! Step on the foot pedal, and start working with no shot, no drill!

iLASE™ 940nm DIODE LASER
DOCKING STATION

- Adds dual wavelength versatility and convenience
- First totally wireless dental laser
- 5 Watts peak power with ComfortPulse™
- Battery operated with finger switch activation
- Exclusive bondable tips in many diameters & lengths
- Single use for NO cross contamination

BREAKS THE
DENTAL SPEED BARRIER

- Faster than the drill, without the delay of anesthetic
- Patented laser technology delivers 10 watts of power
- Up to 100 pulses/sec. for superior soft-tissue cutting
- Enables multi-quadrant same-day procedures

ENABLES PAINLESS
BIOLOGICAL DENTISTRY

- Painless — no shot necessary
- No micro-fractures or thermal damage
- No cross contamination as with bur
- More precise, minimally invasive

Roger P. Levin, DDS
Founder and CEO of Levin Group, Inc.

PROVIDES GREAT RETURN ON INVESTMENT

- “A fantastic tool to increase production!”
 —Roger Levin
- Increases treatment acceptance of day-to-day restorative cases
- Attracts new patients
- Increases productivity and enables new procedures

©2011
Abstract

Objectives: This case report describes the application of an Er,Cr:YSGG laser in regenerative periodontal surgical therapy.

Materials and methods: A patient with extensive periodontal tissue breakdown is treated with an Er,Cr:YSGG laser for granulation tissue removal, bone decorticalization and root decontamination. In the regenerative procedure, demineralized bovine bone mineral and collagen membranes were used.

The following clinical parameters were recorded at baseline, three months, six months, one year, two years and five years: plaque index (PI), bleeding on probing (BOP), periodontal pocket probing depth (PPD), recession (REC), clinical attachment level (CAL).

Results: The operated sites demonstrated uneventful healing. Radiographically, remineralization was observed at six months. At a one year follow-up, significant probing pocket depth reductions and clinical attachment level gains were registered.

Conclusion: In this report, it may be acknowledged that the Er,Cr:YSGG laser could be applied for debridement and decontamination of both the root and the bone defect in guided tissue-regeneration procedures. Further investigation is needed to identify in which treatment protocol in periodontology the Er,Cr:YSGG laser can be integrated and with which benefits.
Background

The application of laser in periodontology is widely discussed, especially as several laser systems with their specific wavelength have a different impact on periodontal tissues. Excellent knowledge of laser applications is essential, which requires the operator to endure a learning curve to avoid adverse effects.

During laser irradiation, the power settings play a significant role and must be regulated appropriately in order to avoid detrimental effects to the irradiated tissues (Ishikawa I. 2002).

Periodontal tissue destruction is treated according to the type of defect and the location, posterior or anterior, in the mouth.

Regenerative therapy is indicated in case of intraosseous defects of which the radiographic angle and number of walls determine which kind of procedure needs to be applied and which kind of materials need to be used. The difficulty of guided tissue regeneration and other treatments of the periodontium lies in the fact that we are dealing with roots, which have an avascular surface in which both the multiple specialized cell types and the microbial environment are involved in all healing processes of the periodontal ligament.

Materials and methods

The Er,Cr:YSGG laser (Biolase, Inc.; San Clemente, Calif.) with a 2,780 nm wavelength, in the far-infrared spectrum, is a class 4 laser, with a pulse repetition rate of 10 Hz to 50 Hz and power output from 0.25 to 8 watt, and pulse energy of 300 mJ. The flexible optical trunk fiber is connected to a straight or angled handpiece.

The laser beam is accompanied by a water and air spray. The water/air spray represents a hydrating and cooling agent reducing thermal effects. Both air and water settings can be modified from 0–100 percent.

Radiation of the Er,Cr:YSGG laser is absorbed mainly by water and calcium hydroxyapatite.

With a pulse duration of 90 or 150 µsec, the Er,Cr:YSGG laser has a high ablation efficiency and low thermal impact on the surrounding tissues (Straßl, 2004) "Comparison of the emission characteristics of three erbium laser systems — a physicals case report." (JOLA 2004).

A 44-year-old female patient with incidental, severe adult periodontitis (Vd Velden U., 2005). Medical conditions and lifestyle: The patient was a non-smoker and she suffered from severe II grade obesity (BMI 35–39.9) and stress. Family history was positive for periodontitis.
Intraoral exams (Fig. 1) demonstrated the central upper left incisor with recessions on the buccal and the distal and a black triangle at the soft tissue outline distally. Second grade mobility, probably because of occlusal trauma, was evident. Periodontal pocket probing depths were buccal 7 mm (Fig. 2), distal 9 mm (Fig. 3), mesial 3 mm and lingual 3 mm.

The plaque index (PI) and bleeding on probing (BOP) was less than 15 percent, and the patient demonstrated high standards of oral hygiene. Radiographic exams (Fig. 4) showed a vital tooth with a normal root length. A wide-angled, non-supportive bone defect was present at the distal side of the root.

Follow-up was monitored with radiographs, with BOP- and PI-indexes and PPD, REC, CAL were registered.

The occlusion was corrected by elimination of the pre-contact, and no splint was placed. After infiltration anesthetics, the soft-tissue incisions were made with a proposed papilla preserve technique (by Takei in 1995), reflecting the lingual papilla to the buccal. The laser's angled handpiece mounts a chisel-shaped tip, with which in contact mode the flap design is made. Laser power settings on 2.0 watt, 30 percent air, 10 percent water and 30 Hz. Granulation tissue was removed (Fig. 5) with laser power settings on 2.5 watt, 40 percent air, 20 percent water and 25 Hz. Root-conditioning (Fig. 6) is performed holding the tip in a 1.5–2 mm distance from the root, in overlapping vertical and horizontal strokes, until the root-surface has a whitish-etched aspect, with laser settings 1.5 watt, 30 percent air, 20 percent water and 20 Hz.
The wide non-sustaining defect (Fig. 7) was filled with the demineralized bovine bone mineral (Fig. 8) to avoid collapse of the soft tissue into the defect. The bone substitute (Bio-Oss, Geistlich Biomaterials) was then covered with a resorbable collagen membrane (Bio-Gide, Geistlich Biomaterials) to avoid fibroblast ingrowth.

After releasing the buccal flap, the papilla was repositioned and sutures were placed, and the wound was perfectly closed without tension. Patient received postoperative instructions.

Results

Initial healing was uneventful, although the tooth demonstrated grade-I mobility, which diminished in the first three months to zero. After two weeks, sutures were removed and oral hygiene was resumed by carefully brushing the operated site.

At six months, remineralization of the defect was evident on a radiographic exam (Fig. 9). At one year, significant CAL gains have been found, both on the buccal and on the distal. To further close the black triangle, a composite filling was made on the mesial side of tooth #22 (Fig. 10). The PPD on the buccal went from 7 mm at baseline to 2 mm and had a CAL-gain of 6 mm, which remained stable (Table 2, Fig. 11). The PPD on the distal went from 9 mm to 4 mm in the first 12 months (Table 3, Fig. 12) and measured at 60 months 3 mm (Table 3, Fig. 14), with a final CAL-gain of 9 mm. Radiographic follow-up showed regular alveolar bone outline with lamina dura at 60 months (Fig. 13).

Discussion

According to evidence-based therapy, a combination of barrier membranes and bone substitutes is a standardized approach to treat wide non-supportive bone defects (Camelo M. 1998).

To introduce the laser treatment in regenerative periodontal surgery for debriding and decontaminating the bone defect, it needs to be taken in consideration that much knowledge in laser dentistry is still experience-based and widely discussed. This is especially so because there are many kinds of wavelengths, as well as very little evidence-based research (Ishikawa I. 2008).

In periodontal regenerative surgery, the appropriate conditioning of root surfaces is likely to be important for enhancing predictability of regenerative therapies (AAP, 2005). The introduction of the Er,Cr laser to debride the defect and decontaminate the root is based on several findings. It is reported that this laser is suitable for the disinfection of even the deeper layers of dentin because of its bactericidal effect (Schoop U. 2004).

With the appropriate settings, an Er,Cr:YSGG laser is capable of performing scaling and root planing to remove calculus, and because of its short pulse, it may be especially suitable for the micro-morphology of the root surface (Hakki SS. 2010). Because of high absorption in water of laser energy, an effective ablation with a very thin surface interaction occurs on the irradiated tissues and without any major thermal damage to the irradiated and surrounding tissues (Straßl M. 2004, Wang X. 2005).

To avoid smear layer caused by hand instruments or detrimental effects of chemical root conditioning (Blomlof J. & Lindskog S. 1995), the Er,Cr laser is used to clean and etch the exposed root surface. Furthermore, the Er-wavelength seems to give comparable results to ultrasonic devices (Crespi R. 2007), without leaving a smear layer.

The AAP consensus statement declared that research should be focused on identifying factors that can detoxify roots and also influence appropriate cell attachment (AAP 2005). Regeneration of periodontal

<table>
<thead>
<tr>
<th>mesial</th>
<th>baseline</th>
<th>12 mnts</th>
<th>24 mnts</th>
<th>60 mnts</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPD</td>
<td>3 mm</td>
<td>3 mm</td>
<td>4 mm</td>
<td>3 mm</td>
</tr>
<tr>
<td>REC</td>
<td>0 mm</td>
<td>1 mm</td>
<td>0 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td>CAL</td>
<td>3 mm</td>
<td>4 mm</td>
<td>4 mm</td>
<td>4 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>buccal</th>
<th>baseline</th>
<th>12 mnts</th>
<th>24 mnts</th>
<th>60 mnts</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPD</td>
<td>7 mm</td>
<td>2 mm</td>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>REC</td>
<td>3 mm</td>
<td>2 mm</td>
<td>2 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>CAL</td>
<td>10 mm</td>
<td>4 mm</td>
<td>4 mm</td>
<td>4 mm</td>
</tr>
</tbody>
</table>

Table 1

Table 2
tissues is reported in studies, where lasers’ decontaminative capacity created the right circumstances for fibroblast attachment on root surfaces (Feist IS. 2003), and, in case reports, this might have resulted in clinical improvements in periodontal healing (Schwarz F. 2003).

Er-laserwavelength is able to ablate periodontopathic bacteria with thermal vaporization, and its bactericidal effect on the diseased root surfaces appears to be superior to that of the ultrasonic scaler (Akiyama F. 2010). Furthermore, the Er,Cr laser irradiation to perforate the alveolar bone of the defect to release blood, containing growth factors, could be advantageous for wound healing of bone tissues as comparative studies on bone healing suggested (Pourzarandian A. 2004).

The application of Er-wavelength seems to be slightly more effective when platelet-derived growth factors are involved for regeneration purposes and, therefore, a promising treatment alternative (Belal MH. 2007).

Clinical relevance: statement and conclusions

The application of an Er,Cr:YSGG laser with 2,780 nm wavelength, which substitutes for the scalpel blade, root conditioning agents and hand- or ultrasonic instruments, demonstrates the possibility to integrate laser treatment successfully in various stages of advanced periodontal therapy.

Clinically, the Er,Cr:YSGG laser seems to contribute with its decontaminative capacities to create ideal circumstances for regenerative procedures, which resulted in significant CAL-gain in this case report.

Randomized controlled clinical trials and more basic studies have to be encouraged and performed to confirm the status of Er,Cr:YSGG laser treatment as an adjunct in traditional periodontal surgical therapy.

References

- Blomlof J. & Lindskog S., “Periodontal tissue vitality after different etching modalities.” JCP 1995, Jun;22(6) 464–468
From everyday dentistry to advanced photoacoustic endodontic applications (PIPS): Er:YAG & Nd:YAG dual wavelength laser

Authors Lawrence Kotlow, DDS, Enrico DiVito, DDS & Giovanni Olivi, MD, DDS

Introduction

Lasers provide an exciting new technology that allows the dentist the ability to give patients optimal care without many of the “fear factors” found in conventional dental techniques. Used with proper understanding of laser physics, lasers are extremely safe and effective.

Using lasers for caries removal, perio treatment, endodontic treatment, bone management, cutting and shaping, and soft tissue procedures can reduce postoperative discomfort, infection and provide safe, simple in-office treatment. As a result, we can improve our efficiency, expand what we can do, achieve better results and increase production.

Lasers represent a real quantum leap forward in the treatment of our patients, including the pediatric patient. The U. S. Food and Drug Administration (FDA) gave approval for the use of the Er:YAG laser in 1997 for both hard- and soft-tissue procedures. The erbium doped (erbium particles placed within the YAG crystal) crystal of Yttrium-Aluminum-Garnet’s (Er:YAG) development and success has made the treatment of children safer and quicker.

Plainly stated, a laser is a piece of equipment that creates a concentrated monochromatic beam of visible or infrared light that can be absorbed by a specific target. Since then, laser-assisted dental care has changed forever the way dentists can prepare diseased teeth, ablate bone and treat soft tissue abnormalities and disease. An entire new standard of care is becoming a reality.

Lasers and pediatric dentistry are a perfect fit. There are a wide range of hard and soft dental procedures that may be completed using lasers as an alternative to conventional dental care on adults and, especially, children. Many of these procedures may be treatments dentists historically refer out to other specialists; however, if you understand and use your laser efficiently, you will discover that many of these procedures that every dentist can easily complete.

The question that is often the major concern and barrier to investing in lasers is the how this investment will pay for itself, more recently described as return on your investment (ROI). Will it pay for itself? We prefer to speak of this as the secondary effect. If you understand your laser, it will easily pay premiums on your investment, and the cost factor becomes a non-issue.

The purchasing of lasers is an investment, not an expense, for any dental practice. Lasers represent a fundamental change in the entire way dentistry has been taught. We can now rethink and often modify G.V. Black’s principle of extension for prevention with the concept of minimally invasive micro-dentistry. We need to understand that laser dentistry is one portion of an
The laser that we call the “all-purpose” laser is the Lightwalker Er:YAG & Nd:YAG laser, manufactured by Fotona and distributed in the United States by Technology4Medicine. The Er:YAG produces its effect at 2940 nm and has as its primary tissue target water and hydroxyapatite. It is very safe, relatively quiet, eliminates the smells and vibrations associated with the dental handpiece and, most importantly, is much more comfortable for the patient, significantly reducing the need for local anesthesia.

The use of the new generation erbium lasers for repair of incipient hard-tissue disease allows the dentist to provide a stress-free means of restoring teeth in a minimally invasive manner, most often with no shot and no numb lip, without the need for any local anesthetics.

The erbium laser can be used for restoring primary and permanent teeth, eliminating or reducing the amount of local anesthetics. In most cases, the patient will not require numbing for Class 1, 2 (sometimes), 3, 4, 5, 6 restorative procedures using bonded restorative materials. Using the concept of minimally invasive restorative procedures, the Er:YAG laser allows the operator to remove only diseased tissue and thus preserves much more of the healthy unaffected tooth.

In cases where alloy is preferred, the laser’s analgesia effect may also allow the dentist to create a restorative preparation using a conventional handpiece that is not meant for bonding. The erbium laser is effective because of its effect on its target, water within the tooth structure. This effect occurs when the laser heats up water within the target tissue, causing it to create small microscopic explosions (photothermal followed by photoacoustical effects). When applied to soft tissue, bone or teeth and cavities, the explosions then cause the areas to be vaporized.

There is a wide array of soft-tissue procedures that are able to be completed using the all-purpose laser: maxillary and mandibular frenum revisions, lingual frenum revisions, treatment of pericoronal pain or infection, removal of hyperplastic tissue because of drugs or poor oral care in orthodontic patients, biopsies, treatment of aphthous ulcers and herpes labialis, pulpotomies, removal of impacted teeth and in adults apicoectomies and bone recontouring.

Parents often express concern about the need to take radiographs because of the nature of X-rays and their possible side effects on their child’s overall health. They question the use of alloys because of the chemical makeup of the alloy. Whether these should be a real concern in today’s dental care is open to debate, depending on your individual beliefs. There are also concerns by many, although not as loudly, about the effect of various pulpotomy procedure medicaments used in pulpotomy procedures such as formocresol.

Lasers provide a safe, non-chemical effective alternative treatment for pulpotomies. During eight years, post-treatment results on more than 4,000 pulpotomies using the erbium (2940 nm) laser provides ample evidence that this method is both effective and safe for children without the need for introducing chemicals or using electrosurgery methods.

When the final result of orthodontic positioning of the front teeth results in gingival hypertrophy, the laser can be a useful tool to increase crown length and give the patient a more esthetic smile. This may often be accomplished without the need for local

Figs. 1–2. Representative sample images of root canal dentinal walls irrigated with 17 percent EDTA and PIPS for 20 seconds. (Photos/provided by Technology4Medicine)
anesthesia. Patients who have medically induced hyperplastic tissue, such as patients requiring dilantin, can also have their tissue reduced and reshaped with the erbium.

In addition to the many examples described in this article, lasers can be used for additional procedures not usually required in pediatric dentistry, such as revisions of the abnormal mandibular frenum, often avoiding the need for soft-tissue grafts, crown-lengthening procedures where bone requires recontouring, apicoectomies, removal of boney exostoses, removal of root remnants, incising and draining soft-tissue infections, advanced periodontal treatments and the latest in advanced endodontic treatment via photon-induced photoacoustic streaming.

Photoacoustic endodontics using PIPS

The goal of endodontic treatment is to obtain effective cleaning and decontamination of the smear layer, bacteria and their byproducts in the root canal system. Clinically, traditional endodontic techniques use mechanical instruments, as well as ultrasonic and chemical irrigation, in an attempt to shape, clean and completely decontaminate the endodontic system but still fall short of successfully removing all of the infective microorganisms and debris. This is because the complex root canal anatomy and the inability for common irrigants to penetrate into the lateral canals and the apical ramifications. It seems, therefore, appropriate to search for new materials, techniques and technologies that can improve the cleaning and the decontamination of these anatomical areas.

Among the new technologies, the laser has been studied in endodontics since the early 1970s and has become more widely used since the ’90s.

Different wavelengths have been shown to be effective in significantly reducing the bacteria in the infected canals, and important studies have confirmed these results in vitro. Studies reported that near infrared laser are highly efficient in disinfecting the root canal surfaces and the dentinal walls (up to 750 microns the diode 810 nm and up to 1 mm the Nd:YAG 1064 nm). On the other hand, these wavelengths did not show effective results in debriding and cleansing the root canal surfaces and caused characteristic morphological alterations of the dentinal wall. The smear layer was only partially removed and the dentinal tubules primarily closed as a result of melting of the inorganic dentinal structures.

Other studies reported the ability of the medium infrared laser in debriding and cleaning root canal walls. The bacterial load reduction after erbium laser irradiation, demonstrated high on the dentin surfaces, but low in depth of penetration because of the high absorption of laser energy on the dentin surfaces. Also the laser activation of commonly used irrigants (LAI) resulted in statistically more effective removal of debris and smear layer in root canals compared with traditional techniques (CI) and ultrasound (PUI). Additionally the laser activation method resulted in a strong modulation in reaction rate of NaOCl significantly increasing production and consumption of available chlorine in comparison to ultrasound activation.

A recent study has reported how the use of an Er:YAG laser, equipped with a newly designed radial and stripped tip, in combination with 17 percent EDTA solution, using very low pulse duration (50 microseconds) and low energy (20 mJ) resulted in effective debris and smear layer removal with minimal or no thermal damage to the organic dentinal structure through a photoacoustic technique called photon induced photoacoustic streaming or “PIPS.” Also the same photoacoustic protocol in combination with 5.25 percent sodium hypochlorite solution has been investigated and shown to reduce the bacterial load and its associated biofilm in the root canal system three dimensionally.
Other similar studies are in progress for publication and the results are promising and suggest a three-dimensional positive effect of this laser-activated decontamination (LAD) method.

The purpose of this article is to present briefly the experimental background of this laser technique and to introduce the clinical protocol.

Scientific background

The microphotographic recording of the LAI studies suggested that the erbium lasers used in irrigant-filled root canals generate a streaming of fluids at high speed through a cavitation effect.\(^\text{17}\) The laser thermal effect generates the expansion-implosion of the water molecules of the irrigant solution, generating a secondary cavitation effect on the intracanal fluids. To accomplish this streaming, it is suggested the fiber be placed in the middle third of the canal, 5 mm from the apex and stationary.\(^\text{18}\) This concept greatly simplifies the laser technique, without the need to reach the apex and to negotiate radicular curves.

Also, the recorded video of the new technique, PIPS, showed a strong agitation of the liquids inside the canals. It differs from the already cited LAI technique by activating the irrigant solutions in the endodontic system through a profound photoacoustic and photomechanical phenomena. The use of low energy (50 microsecond pulse, 20 mJ at 15 Hz, 0.3 W average power, or less) generates only a minimal thermal effect. The study with thermocouples applied to the radicular apical third revealed only 1.2 degree C of thermal rise after 20 seconds and 1.5 degrees C after 40 seconds of continuous radiation.\(^\text{14}\) When the erbium laser energy is delivered at only 50 microsecond pulse duration through a special designed tapered and stripped 400 microns tip (Fotona LightWalker, Technology4Medicine), it produces a large peak power of 400 watts when compared to a longer pulse duration. Each impulse, absorbed by the water molecules, creates a strong “shock wave” that leads to the formation of an effective streaming of fluids inside the canal while also limiting the undesirable thermal effects seen with other methodologies. The placement of the tip in the coronal portion only of the treated tooth allows for a more minimally enlarged canal preparation with less thermal damage as seen with those techniques placed into the canal system.

The root canal surfaces irrigated with 17 percent EDTA and laser activated for 20 seconds showed exposed collagen matrix, opened tubules and the absence of smear layer and debris (Figs. 1-3). The rinsing with 5.25 percent sodium hypochlorite and laser irradiation for 20 seconds produced a strong activation of the solution, as reported by Macedo,\(^\text{13}\) improving the disinfecting action of the sodium hypochlorite.\(^\text{16}\) The disinfecting action of PIPS is very effective both on the root surface, the lateral canals and the dentinal tubules, as confirmed with SEM and confocal studies (Fig. 4).

The profound and distant effect of PIPS eliminates the need to introduce the tip into the root canal system. Unlike traditional laser techniques requiring placement of the tip 1 mm from the apex, or even 5 mm from the apex as proposed for LAI18, the PIPS tip is placed in the coronal portion of the pulpal chamber only and left stationary allowing the photoacoustic effect to spread into the openings of each canal. A new tip design consisting of a 400-micron diameter, 12 mm long, tapered end is used for this technique (Fig. 5). The final 3 mm of coating is stripped from the end to allow for greater lateral emission of energy compared to the frontal tip.

This mode of energy emission allows for improved lateral diffusion with low energy and enhanced photoacoustic effect.

Discussion

Laser irradiation is a common technique used in endodontics to improve both the cleaning, the debriding and disinfection of the root canal system. Many wavelengths and protocols are used. Near infrared lasers are used for the three-dimensional decontamination of the endodontic system. Nd:YAG and diode lasers use thermal energy to destroy bacteria. Observations reveal a certain grade of thermal injury to the root canal surface and create a typical morphological damage. Moreover, they are not able to thoroughly remove the smear layer.

On the contrary, erbium lasers are used for their effective smear layer removal while their bactericidal activity is limited to the root surface. The placing of the tip close to the apex and its back movement during the activation process is related to the risk of apical perforation, ledging and surface thermal damage,
because of the ablation ability of this wavelength. Also a combination of the near and medium infrared lasers has been proposed. A technique, called twinkle endodontic treatment (TET), uses the erbium laser energy first, to clean the root canal surface and remove the smear layer, and the Neodimium:YAG laser second, used in dry mode as the final disinfecting step. All these techniques utilize traditional tips and fibers placed into the canal, close to the apex (1 mm) with all the corresponding thermal disadvantages observed in long, narrow and curve canals.

The erbium lasers are also used as a medium of activation of commonly used irrigants (LAI), avoiding the risk of thermal damage, while increasing the cleaning and disinfecting activity of the fluids. PIPS, in particular, reduces all these risks and disadvantages, thanks to the position of the tip in the coronal orifice only and to the use of minimally ablative energy levels of 20 mJ or less.

The findings of our studies demonstrated that PIPS technique resulted in a safe and effective debridging and decontaminating the root canal system. Our clinical trials showed that PIPS technique greatly simplifies root canal therapy while facilitating the search for the apical terminus, debriding and maintaining patency.

As a result of the efficacy of PIPS the final size required for canal shaping can be significantly reduced, often to a size 25/04, allowing for a more minimally invasive and biomimetic preparation which can then be obturated three dimensionally.

In conclusion

Lasers are an extremely versatile addition to the dental practice and can be used in many instances instead of the conventional methods employed by the vast majority of dentists. Incorporating a laser in the dental practice should be viewed as an investment rather than a cost. When used with a good knowledge of laser physics, training and safety, lasers provide our patients a new standard of dental care._

References

Lawrence Kotlow, DDS, has been in private dental practice in Albany, N.Y., since 1974. He is board certified in pediatric dentistry. He is a recognized standard proficiency course provider for the Academy of Laser Dentistry.

Enrico DiVito, DDS, is an adjunct professor at the Arizona School of Dentistry and Oral Health. He is in private practice at the Arizona Center for Laser Dentistry in Scottsdale, Ariz., in conjunction with MDATG research group.

Giovanni Olivi, MD, DDS, is a professor of endodontics at the University of Genoa School of Dentistry, where he is director for the Laser in Dentistry Master Course with Prof. S. Benedictini. He is in private practice in Rome, Italy.
Lasers have been a part of the dental scene for more than 25 years. Unfortunately, they have tended to be big, clunky, hard-to-use, expensive machines that were largely ignored. Affordable, effective, user-friendly diode lasers have only recently arrived on the scene. In fact, the diode laser, in a very short time, has proven itself to be the ideal “soft-tissue hand piece.”

The diode laser functions as the essential hand-piece for all soft-tissue procedures, just as the dental handpiece is essential for all hard-tissue procedures. The advantages of the diode laser for soft tissue applications include: surgical precision, bloodless surgery, sterilization of the surgical site, minimal swelling and scarring, minimal suturing and virtually no pain during and after surgery.

What about using the diode laser for the treatment of periodontal disease (laser assisted periodontal treatment)? An early version of the diode laser was used effectively in the treatment of periodontal pockets in 1998. So why is there so much confusion and controversy regarding the use of lasers in the treatment of periodontal disease today? There is need for clarification and simplicity.

First, as the name laser assisted periodontal therapy (LAPT) implies, the laser is only part of the treatment equation. The laser should not be viewed as a stand-alone treatment for periodontal disease.

Second, the laser may not be of any help in very advanced cases of periodontal disease. These cases may require a surgical approach.

Third, when discussing the benefits of LAPT, we must specify the particular type of laser used. Several categories of lasers have shown positive results. For the sake of clarity and simplicity, the following discussion will deal exclusively with the diode laser, because its ease of use and affordability have made it the predominant laser in dentistry.

Diode lasers for periodontal treatment

Two types of diode lasers have been studied for their effects in laser assisted periodontal therapy: the diode laser (which emits high levels of light energy), and the low-level diode laser (which emits low intensity light energy).

There is very compelling evidence in the dental literature that the addition of diode laser treatment to scaling and root planing (SRP) will produce significantly improved and longer lasting results. SRP is the gold standard in nonsurgical periodontal treatment.

Low-level lasers for biostimulation have been used in medicine since the 1980s. The therapeutic
Fully loaded for ease and efficiency

The NV diode laser sets the bar for soft tissue surgery with premium features and performance. None of the cleaning, cords or complications to slow you down, just freedom to do your best. Discover NV, the award-winning choice for discriminating clinicians.

- Cordless design for unrestricted movement and portability between operatories
- Disposable tips for quick, seamless set up and clean up
- Wireless foot pedal activation for strain-free operation
- Equipped with simple preprogrammed settings
- Complete with 8 CE unit training course

Visit us at ADA Booth 1314
Call (800) 620-4488 to schedule a test drive today.

©2011 Discus Dental LLC. All rights reserved. No Copy. ACM 3462-9121.
effect is non-cutting and low intensity and covers a much wider area than the traditional laser. Low-level laser therapy (LLLT) is treatment where the light energy emitted by the laser elicits beneficial cellular and biological responses. On a cellular level, metabolism is increased, stimulating the production of ATP (adenosine triphosphate), the fuel that powers the cell. This increase in energy is available to normalize cell function and promote tissue healing. 3,4

The functions of the diode and low-level diode laser have remained separate until recently. With the introduction of the biostimulation delivery tip, the diode laser is able to provide both cutting and therapeutic effects. When the low level tip is used, the laser energy is delivered over a wider area, decreasing the energy level, and producing the low level therapeutic effect. Two laser companies have made these auxiliary tips available (Figs. 1–4).

Used together, these two laser treatment modalities provide benefits that help to heal the chronic inflammatory response in the periodontal pocket. This works well in treating mild to moderate periodontitis. Patients can be treated in a minimally invasive way, without surgery, in the general practice. There is time to try the surgical approach, if needed, at a later date.

The periodontal pocket

Periodontal disease is a chronic inflammatory disease caused by bacterial infection. The inflammation is the body’s response to destroy, dilute or wall off the injurious agent. 5

Unfortunately, if the situation remains chronic, this protective mechanism of the body to defend itself against injury, becomes destructive to the tissues.

The periodontal pocket, in periodontal disease, contains several substances that contribute to the continuation of the unhealthy condition (Fig. 5):

1. Calculus and plaque on the tooth surface.
2. Pathogenic bacteria.
3. An ulcerated epithelial lining with granulation tissue and bacterial by-products.

What do we need for healing of the pocket?

1. **SRP:** Elimination of calculus, plaque and other debris on the tooth to create a totally clean surface
2. **Decontamination:** Elimination of all pathogenic bacteria dispersed through the pocket
3. **Curettage:** Elimination of granulation tissue, bacterial products, and ulcerated areas to create a clean, even epithelial lining without tissue tags (epithelial remnants)
4. **Biostimulation:** To kick-start the healing process

The following is a sequence to show how this can be easily accomplished in a minimally invasive, non-surgical way:

1. Calculus is removed with SRP. This procedure has been well documented throughout the dental lit-
PRECISE™ LTM
YOUR SOFT TISSUE HANDPIECE

PERFORMANCE
Easily shape, contour gingival tissues. Faster, predictable healing. All in a clear, dry field.

PRICE
Contact us for our aggressive “special end-of-year pricing”
Includes wireless foot control, 2 autoclavable handpieces and 2 in-depth training programs.

Better value. Better performance. Finally, a soft tissue handpiece that is right for you.

Ask your Henry Schein Representative or call:
1.800.645.6594 prompt #1

Exclusively Distributed by
HENRY SCHEIN®

CAO GROUP, INC.
Easier. Faster. Better™
www.caogroup.com

PRECISE™ LTM
Diode Laser
Designed, Developed, Manufactured in the USA.
The diode laser and the low level diode laser are ideal for the remaining steps:

2. Because a bacterial infection is the initiator of the chronic inflammatory response of periodontitis, the bactericidal and detoxifying effect of laser treatment is advantageous.6 The diode laser’s bactericidal efficacy, particularly against specific periopathogens, has been well-documented.7-10 Moreover, there is a significant suppression of A. Actinomycetemcomitans, an invasive bacterium that is not easily treated with conventional scaling and root planing. A. A, as it is generally called, is not only present on the diseased root surface, but also invades the adjacent soft tissue, making it virtually impossible to remove with mechanical means alone.11-13 The diode laser energy is able to penetrate into the soft tissue to eliminate this pathogen.

3. The diode laser is a specific instrument well suited in dealing with diseased soft tissue. The diode laser energy is well absorbed by melanin, hemoglobin and other chromophores that are present in periodontal disease.14 The 2002 American Academy of Periodontology statement regarding gingival curettage15 proposes that “gingival curettage, by whatever method performed, should be considered as a procedure that has no additional benefit to SRP alone in the treatment of chronic periodontitis.”

However, the diode specifically targets unhealthy gingival tissues, performing an effective curettage that produces a clean, even epithelial lining without tissue tags. Also stated is that all the methods devised for curettage (including lasers) “have the same goal, which is the complete removal of the epithelium”
Loose change.

Make change.

29 million Afghan citizens live with little or no access to basic dental treatment.

The Afghanistan Dental Relief project is a solution.

We provide free basic dental care for Afghan citizens and free training for Afghanistan’s widows and orphans to become future dental hygienists, technicians and assistants.

To make basic dental care and education a reality for more communities throughout Afghanistan, we need one crucial element: You.

www.adrpinc.org
adrp@verizon.net
805-963-2329
and “none of these alternative methods has a clinical or microbial advantage over the mechanical instrumentation with a curette.” This was the science in 2002. By 2010, this AAP statement had not been updated. Studies have shown that instrumentation of the soft tissues in the diseased periodontal pocket with the diode laser leads to complete epithelial removal while conventional instrumentation with curettes leaves significant epithelial remnants. Thus, in fact, the diode laser does have a clinical advantage over the mechanical instrumentation with a curette.

4. This step requires the low-level laser tip. Studies have shown that low-level laser light affects damaged but not healthy tissue. Laser biostimulation normalizes cell function and promotes healing and repair. Secondary effects include increased lymphatic flow, production of endorphins, increased microcirculation, increased collagen formation and stimulation of fibroblasts, osteoblasts and odontoblasts. This stimulates the immune response, pain relief and wound healing. Studies have shown that low-level laser therapy performed in conjunction with SRP on patients with both mild periodontitis and chronic advanced periodontitis can significantly improve treatment outcomes and the long-term stability of periodontal health parameters.

The above four steps create the ideal environment in the periodontal pocket for healing to take place.

Lasers are an adjunct to SRP, not a stand-alone procedure. On the other hand, SRP is not a stand-alone procedure. We need all the pieces of the puzzle to create health.

The protocol so far

Now that we know what we need, how do we achieve it?

The protocol must incorporate the four steps discussed above to create the ideal environment for periodontal healing to occur: a clean, calculus-free hard tissue surface, no pathogenic bacteria, a smooth, clean soft tissue surface and biostimulation.

Biostimulation tips are at present only available for two diode lasers: the Picasso by AMD and the ezlase by Biolase.

Individual parameters vary depending on the clinician and the particular diode laser used. However, most protocols follow a simple formula:

1. The hard-tissue side of the pocket is first debrided with ultrasonic scalers and hand instruments (Fig. 6).
2. This is followed by laser bacterial reduction and coagulation of the soft-tissue side of the pocket (Figs 7, 8). The laser fiber is measured to a distance of 1 mm short of the depth of the pocket. The fiber is used in light contact with a sweeping motion that covers the entire epithelial lining, starting from the base of the pocket and moving upward. The fiber tip is cleaned frequently with a damp gauze to prevent debris buildup.
3. The low-level laser tip is applied at right angles and with direct contact to the external surface of the pocket (Fig. 9) for biostimulation.
4. Re-probing of the treated sites should be performed no earlier than three months after treatment to allow for adequate healing (Fig. 10).
YANKEE Dental Congress® 2012
Boston Convention & Exhibition Center

Ride the Wave of SAVINGS
Register 4 Dental Professionals from the same office and the 5th goes FREE*
(*some restrictions apply)

Registration and Housing Open September 21, 2011 at Noon

LIVE DENTISTRY
Friday, January 27, 2012
530RW 10:00 am - 1:00 pm

LIVE GUIDED SURGERY
Michael Boschetti, DMD ♦ Lawrence Miller, DMD
- Review the benefits of CBCT 3D imaging
- Understand general CAD/CAM restorations
- Observe guided implant surgery
- Gain an overview of CAD/CAM materials

PATTERSON DENTAL

“Scottsdale of the East”
Yankee Dental Congress and the famous Scottsdale Center for Dentistry are teaming up to bring you an all-star line-up of speakers covering esthetic, restorative, and CAD/CAM dentistry.

Introducing The Madow Brothers, the Rock and Roll Dentists straight from Las Vegas and The Best Seminar Ever (TBSE)
Topics will include:
- How to Love Dentistry, Have Fun, and Prosper!
- Grow Your Practice with Social Media
 It’s Fun, Fast, Free and it Works!

Disney Institute
Disney Institute was created to showcase Disney best practices and as one of the most recognized names in professional development, Disney Institute travels the world offering engaging lectures.

Topics will include:
- Building a Culture of Health Care Excellence
- Disney’s Approach to Quality Service

Thursday, January 26, 2012
TIPS AND TRICKS FOR CEREC USERS
Richard Rosenblatt, DMD

SIMPLE STEPS TO CHARACTERIZE YOUR CAD/CAM RESTORATIONS
Richard Rosenblatt, DMD

Friday, January 27, 2012
ESTHETIC ENHANCEMENT FOR CAD/CAM RESTORATIONS—STAIN AND GLAZE
Michael Skramstad, DDS

INTRAORAL IMPRESSION SCANNING DEVICES AND CAD/CAM
Paul Feuerstein, DMD

Saturday, January 28, 2012
IMPLANT PLACEMENT UTILIZING GUIDED SURGERY WITH CAT SCAN AND CAD/CAM TECHNOLOGY
Carl Bosckett, DMD

yankeedental.com • 877.515.9071
The tissue remains fragile for this period of time. The power settings and duration are determined by the particular laser used. The manufacturers should be consulted for the proper parameters to achieve the best results. With experience, the user will feel comfortable enough to adapt the protocol to his or her particular practice. This protocol may be performed by the dentist and/or hygienist as determined by the regulating organization in the geographic location of the dental practice.

Many of our patients have periodontal disease, but they want to be treated in a minimally invasive way. They are not rushing out to the periodontist to have “gum surgery.” We need to treat their disease before it spirals out of control, especially when considering the periodontal health/systemic health link.

There is significant proof that the addition of laser-assisted periodontal therapy to scaling and root planing improves outcomes in mild to moderate periodontitis. The treatment is not invasive. It is not uncomfortable.

We now have the tools and protocol to treat our periodontal patients with an effective procedure that they are ready to accept. What are we waiting for?

Editor’s note: A complete list of references is available from the publisher.
Technology-enhanced caries detection and treatment options

Abstract

Here we present a case report illustrating technology-enhanced caries detection and treatment systems on occlusal surfaces during a 26-month follow-up. The use of ozone therapy and a laser-induced fluorescence device on incipient occlusal caries lesions in a 25-year-old woman is described. The utilization of the ozone therapy monitored by the laser-induced fluorescence device enabled an alternative and comfortable treatment for incipient caries lesions on occlusal surfaces. Thus, technology-enhanced caries detection and treatment systems are helpful tools during clinical practice.

Introduction

Although the prevalence of dental caries in children has declined in the past several decades, there has been a continuing increase in occlusal caries. This fact may be explained by the changes in caries pattern and progression. Additionally, this may be due to the increased use of fluoride and its superficial remineralization, which seems to delay the cavitation (Strassler and Sensi 2008). In this way, incipient occlusal caries have become more difficult to detect.

The difficulty in diagnosing incipient caries has stimulated the development of new detection methods. Recently, new methods have become available as adjuncts to traditional methods, such as the fluorescence-based devices. These are based on the phenomenon that caries lesions fluoresce more strongly than sound tissues when stimulated by light at specific excitation wavelengths (Hibst et al. 2001, Bader and Sugars 2004).

The most common laser-induced fluorescence device for caries detection used in dentistry is the DIAGNOdent (LF, DIAGNOdent 2095, KaVo, Biberach, Germany). This device emits a red light at 655 nm and quantifies the fluorescence from bacterial porphyrins and other chromophores present in caries lesions (Hibst et al. 2001). The changes in the fluorescence intensity are numerically quantified and translated into values ranging from 0.0 to 99, according to the lesion’s depth. This can be used to help clinicians decide whether a tooth should be restored (Young 2002). The device has been used as an auxiliary to detect and quantify mineral loss in caries.

It is important to point out that the management of dental caries is based on appropriate detection of pathological changes and, consequently, on the correct diagnosis to provide the best treatment for each patient (Tranaeus et al. 2005).

Recently, a novel concept for the treatment of dental caries using ozone gas as a potent microbi-cide has been introduced (Baysan et al. 2000, Baysan and Lynch 2004, Dähnhardt et al. 2006, Baysan and Beighton 2007). Ozone is a gas that quickly kills microorganisms by oxidative degradation of the unsaturated fatty acids in the cell wall (Dähnhardt et al. 2006). The device delivers ozone, through a handheld, directly to the carious lesion in a concentration of 2,100 ppm with a changeover of 300 times per second. A silicon cup is able to tightly seal the covered area (Baysan et al. 2000).

Previous reports have assessed the effect of ozone gas on occlusal caries, non-cavitated occlusal caries and primary root caries, showing significant reductions in the number of microorganisms (Baysan et al. 2000, Brazzelli et al. 2006, Baysan and Beighton 2007). However, the inhibitory effect of ozone in the caries process is discussed and controversial (Hauser-Gerspach et al., 2009; Kronenberg et al., 2009).

To date, there are some clinical studies evaluating improvements in the clinical status of non-cavitated occlusal caries and root caries after ozone therapy monitored by laser-induced fluorescence readings. The patient was instructed with respect to the maintenance of her oral hygiene. An informed consent contract was signed by the patient agreeing with the treatment.

The laser-induced fluorescence device used was the LF (DIAGNOdent 2005; KaVo, Biberach, Germany). The occlusal surfaces were measured according to the manufacturer’s instructions (Fig. 2). The device was first calibrated using a ceramic standard and then calibrated on the buccal surface of the right permanent central incisor. For measurements, tip A for occlusal surfaces was used. The device was moved through the entire occlusal surface until the highest value was obtained (peak value).

The ozone device used was the HealOzone delivery system (Oz; KaVo, Biberach, Germany). The occlusal surfaces were measured according to the manufacturer’s instructions (Fig. 3). The device was first calibrated using a ceramic standard and then calibrated on the buccal surface of the right permanent central incisor. For measurements, tip A for occlusal surfaces was used. The device was moved through the entire occlusal surface until the highest value was obtained (peak value).

The ozone device used was the HealOzone delivery system (Oz; KaVo, Biberach, Germany). Ozone was applied on each tooth at room temperature according to the manufacturer’s instructions (Fig. 3). In each session, the occlusal surface of each tooth was cleaned for 10 s with a water-powder jet cleaner (PROPHYflex II, KaVo, Biberach, Germany).

A 25-year-old Caucasian woman was referred to the clinic of the Preventive, Restorative and Pediatric Dentistry department of the Dental School of Bern, Switzerland, presenting incipient caries lesions.

During the clinical interview, the patient reported that she presented a normal systemic status. The caries risk assessment indicated that she was at low risk.

Visual examination was performed by direct visualisation of the teeth with the aid of a light reflector and a three-in-one air syringe. The patient presented incipient caries lesions on the distal fossae upper right first molar (16), on the distal fossae upper left first molar (26) and on the central fossae lower right first molar (46) (Fig. 1). The visual and tactile characteristics observed were the presence of brown and white opacities and roughness on the fissures, indicating caries activity.

Bitewing radiographs were taken and then analyzed using an X-ray viewer. No radiolucency was observed in the occlusal surfaces.

Based on clinical and radiographic observations, and considering anamnesis data, the treatment proposed was ozone therapy application (to reduce the microflora in the lesion) monitored by laser-induced fluorescence readings. The patient was instructed with respect to the maintenance of her oral hygiene. An informed consent contract was signed by the patient agreeing with the treatment.

Fig. 3a. Ozone device (HealOzone)
Fig. 3b. Ozone gas application after carefully drying the occlusal surface. Note that the silicon cup tightly seals the covered area.
Fig. 4a. Clinical aspect of the incipient caries lesion on tooth 46 at baseline.
Fig. 4b. After two months.
Fig. 4c. After 26 months of follow-up. Note that the lesion’s characteristics and severity changed over time, indicating that the treatment is effective.
Pacific Dental Conference

March 8–10, 2012 Vancouver, BC

Join us in Vancouver for Canada’s premier dental conference!

- Earn up to 15 hours of CE credits during three days of lectures and hands-on courses
- Over 100 speakers and 150 open sessions and hands-on courses to choose from, as well as the Live Dentistry Stage in the Exhibit Hall
- Enjoy the largest two day dental tradeshow in Canada featuring all the newest equipment and products at over 500 exhibitor booths in the spacious PDC Exhibit Hall
- Lunches and Exhibit Hall Receptions included in the registration fee
- Online hotel reservations now available
- Shopping, hotels, restaurants and breath-taking Stanley Park are all within blocks of the spectacular Vancouver Convention Centre
- Scenic two hour drive to world famous Whistler Mountain for spring skiing and snowboarding

Easy online registration opens October 14th, 2011 at...

www.pdconf.com
Fig. 5a. Clinical aspect of the incipient caries lesion on tooth 26 at baseline.

Fig. 5b. After 26 months of follow-up. Note that the lesion’s characteristics, such as smoothness and brightness, indicate caries inactivity.

Table 1. Laser-induced fluorescence (LF) readings and ozone therapy (Oz) application time for each session during a 26-month follow-up.

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Baseline</th>
<th>2 months</th>
<th>4 months</th>
<th>10 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LF</td>
<td>Oz 1</td>
<td>LF</td>
<td>Oz 1</td>
<td>LF</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>40 s</td>
<td>18</td>
<td>40 s</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td>40 s</td>
<td>18</td>
<td>40 s</td>
<td>22</td>
</tr>
<tr>
<td>46</td>
<td>19</td>
<td>40 s</td>
<td>12</td>
<td>40 s</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>15 months</th>
<th>17 months</th>
<th>20 months</th>
<th>24 months</th>
<th>26 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LF</td>
<td>Oz 1</td>
<td>LF</td>
<td>Oz 1</td>
<td>LF</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
<td>80 s</td>
<td>-</td>
<td>80 s</td>
<td>20</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td>80 s</td>
<td>-</td>
<td>80 s</td>
<td>38</td>
</tr>
<tr>
<td>46</td>
<td>16</td>
<td>80 s</td>
<td>-</td>
<td>80 s</td>
<td>14</td>
</tr>
</tbody>
</table>

The purpose of ozone therapy is to reduce the microflora in the lesion, to increase its pH and to oxidise pyruvic acid to acetate and CO2, which opens up "channels" within the dentin to allow the penetration of calcium, phosphate and fluoride ions. This makes remineralization of the demineralised hard tissue possible (Dähnhardt et al. 2006, Hodson and Dunne 2007).

A significant reduction in the clinical status of small and non-cavitated occlusal caries lesions after ozone therapy has been reported (Huth et al. 2005). In the present case, we clinically observed that the incipient lesions arrested after 26 months of follow-up, indicating that ozone therapy remineralized lesions over time. However, the treatment adopted in this case was better achieved when the ozone therapy was applied for 80 s on each tooth compared with 40 s. Polydorou et al. (2006) evaluated the antibacterial activity of 40- and 80-s HealOzone application. The authors concluded that the 80-s ozone application is a very promising therapy for eliminating residual microorganisms in deep cavities.

This case report shows it is possible to treat incipient caries lesions using an ozone-delivering device monitored by laser-induced fluorescence. The treated caries showed lower readings compared with the baseline, indicating that the ozone therapy was successful. At the first recall visit, the LF readings were substantially reduced for tooth 26 and 46. This is in accordance with Dähnhardt et al. (2006), who observed that the use of ozone gas results in an average reduction of 13 percent of the laser fluorescence values immediately after ozone therapy.

In the present case, the clinical characteristics and severity of the carious lesions changed over time, indicating that the treatment was effective. Recently, an in vivo study compared the performance of the LF device with visual and radiographic...
The authors concluded that the LF device may be a useful complement to visual examination, and its diagnostic performance seems to be superior for dentin caries detection. The same result was also observed by a systematic review (Bader and Shugars 2004) that showed laser-induced fluorescence tended to be more sensitive than the visual method in detecting occlusal caries in dentin and less sensitive in detecting enamel caries. The case presented in this paper was monitored by laser-induced fluorescence as an adjunct to visual examination because the LF device is supposed to be an auxiliary method for occlusal caries detection.

It is also important to consider that confounding factors might contribute to false-positive laser-induced fluorescence readings in clinical practice, such as the presence of stains, calculus, hypoplasia, polishing pastes and filling materials (Neuhaus et al. 2009). For this reason, a prophylaxis procedure was done on the occlusal surface of each tooth in each session to avoid possible false-positive readings.

While in this case report it was possible to monitor the caries status after ozone therapy by laser-induced fluorescence, there are some important aspects that clinicians should consider regarding this procedure. For instance, ozone has not been proven superior to other clinical approaches in caries management, such as fluoride or chlorhexidine, sealants, and stepwise excavation (Hodson and Dunne 2007).

It may work better than these approaches, work well in combination with these approaches, or may prove to be entirely unnecessary (Hodson and Dunne 2007). In a systematic review of the literature by Rickard et al. (2004), there was no reliable evidence that the application of ozone gas to the surface of decayed teeth stops or reverses the decay process. The authors emphasised the need for more evidence of appropriate strictness and quality before the use of ozone can be accepted into primary dental care or can be considered a viable alternative to current methods for the management and treatment of dental caries. Additionally, the laser-induced fluorescence device should be considered as a second opinion because, to date, there is no method available that is completely reliable.

Conclusions

The utilization of ozone therapy monitored by laser-induced fluorescence enabled an alternative and comfortable treatment for incipient caries lesions on occlusal surfaces. However, the ozone therapy parameters and cost effectiveness is unknown. It should be recommended to increase the exposure time during the ozone therapy to achieve a better outcome.

In addition, the laser-induced fluorescence device cannot be considered a standard diagnostic tool by itself. It should be used as an adjunct to the traditional methods, especially considering important patient factors, such as caries risk, caries activity, oral hygiene, diet and fluoride supplements.

References

Editorial note: This article originally appeared in the international edition of Laser magazine. The complete reference list is available from the publisher upon request.
Laser-assisted frenectomy in pediatric dentistry

Author: Gabriele Schindler-Hultzsch, MSc, DDS

Abstract

The greatest challenge in pediatric dentistry is the child’s fear of pain, fear of dental treatment, fear of noise and fear of something they do not know. This is the reason why dental surgery in pediatric dentistry is a special challenge for the child, the parents and the dentist.

Dental fear, anxiety and dental behavior management problems often go together with a perceived lack of control. This leads to a lack of compliance and a high percentage of untreated and unhealed children (Klingberg 2008; Butz, Goebel 2006). Laser-assisted frenectomy offers a treatment alternative for children, providing a more convenient therapy.

Introduction

Labial frenectomy is the surgical procedure of removing the frenulum. A labial frenulum is the tissue attached to the upper lip and extends into the gums between the two upper front teeth. The labial frenulum may sometimes extend and intrude into the inner, palatal side of the upper front teeth. A labial frenulum also appears at the lower teeth between the two lower central incisors or as lingual frenulum attached to the tongue and the inner lingual-side of the two lower central incisors.

Indications for frenectomy are a diastema of the upper or lower central incisors, retraction of the gingiva, pain during tooth brushing or orthodontic problems.

Often no treatment is necessary because most of these “abnormal” frenula and diastema disappear as the permanent incisors and canines erupt (Koch, Poulsen 2009). The best time for frenectomy is shortly after the beginning of the eruption of the permanent canines.

Frenectomy can be performed conventionally by scalpel or laser-assisted with: diode lasers at wavelengths of 810 nm, 940 nm, 980 nm, or Nd:YAG (1,064 nm); CO2 lasers (10,600 nm); or lasers of the erbium-group (Er:YAG 2,940 nm or Er,Cr:YSGG: 2,780 nm) (Gutknecht 2007).

Clinical procedure

In this article, laser-assisted frenectomy will be presented with the clinical procedure of the Laserkids® concept. The Laserkids concept (Schindler 2008) is a comprehensive guideline for laser-
MONTRÉAL CANADA

CANADA’S LARGEST ANNUAL SCIENTIFIC AND DENTAL EXHIBITION

MAY 25TH to 29TH 2012
Palais des congrès de Montréal

FEATURING

- Over 95 scientific sessions in English and in French presented by top clinicians from around the world
- Over 240 exhibitors occupying more than 500 booths representing Canada’s largest dental trade event
- Hands-on workshops and seminars covering all aspects of dentistry
- All scientific sessions and access to the exhibit floor included in one low registration fee
- CERP approved continuing dental education credits for all sessions
- Dental Tribune Study Club C.E. Symposia featuring leading experts lecturing in various dental specialties

All this under one roof at the Palais des congrès de Montréal in the heart of downtown Montréal

FOR MORE INFORMATION, PLEASE CONTACT:
Journées dentaires internationales du Québec
625, boul. René-Lévesque Ouest, 15e étage, Montréal, QC H3B 1R2
Tel.: 514 875-8511 • Fax: 514 875-1561
E-mail: congres@odq.qc.ca • Website: www.odq.qc.ca

ANNUAL CONVENTION
ORDRE DES DENTISTES DU QUÉBEC
AN ADA CERP RECOGNIZED PROVIDER

PLEASE SEND ME MORE INFORMATION

Name ____________________________
Address ____________________________ City __________ State __________
Zip Code, Country ____________________________ Telephone ________ E-mail ____________________________
assisted pediatric dentistry including aspects of dental anxiety, behavioral management, desensitizing, special laser parameters and treatment procedures for pediatric dentistry from the first visit to lifetime care (Schindler, Gutknecht 2009).

In this case, the general medical and dental anamnesis shows a healthy 12-year-old boy who was very anxious and did not want to have surgery because of previous bad experiences. He was referred from the orthodontist for frenectomy because of the persistent gap between the two upper central incisors. The referral for frenectomy was late because canines were fully erupted. Further orthodontic treatment was considered.

The clinical findings were a strong, three-way labial frenulum extending to the gap between the two upper central incisors leading to a diastema mediale with an incisal spacing of 5 mm and a cervical spacing of 4 mm. The patient showed an Angle Class I denticulation with a slight protrusion of the front teeth, a convex profile and a swallowing dysfunction.

The diagnosis was a diastema mediale between the two upper central incisors with spacing of the upper central incisors. The treatment plan was laser-assisted frenectomy because of the boy’s fear of surgical treatment. The clinical procedure followed the Laserkids concept.

The treatment procedure for the upper labial frenectomy took eight minutes. In this case, topical and local anesthesia was used because of the strong and deep, three-way frenulum. In many cases, only topical anesthesia is necessary. After applying Cherry GINGICAINE® GEL (Belport Co., Inc. Camarillo, Calif., USA) and waiting for 30 seconds, 1 ml local anesthesia Ultracain® D-S forte 1:100,000 Epinephrine (Sanofi-Aventis Deutschland GmbH, Germany) was applied buccally on the left and right side of the frenulum.

Safety goggles were put on the patient, mother, assistant and dentist while waiting for the anesthetic to work. The time was used to desensitize the child and to get acquainted. A tell-show-show-do technique was used to explain the laser beam, its function and the procedure. The laser beam was shown first on a puppet and then on the finger of the child, following the Laserkids concept. The surgical procedure started when the child felt comfortable. The frenectomy was completed within 4:30 minutes.

For this frenectomy the Er,Cr:YSGG laser with a wavelength of 2,780 nm was used. The procedure was performed with a MC3 tip, 1.5-2 W, 30 Hz, pulse duration 700 µs, 7 percent water and 11 percent air, in contact mode.

The first cut was placed incisally in V-form from the right side at an angle. The second cut followed from the left at an angle with the tissue under tension to allow the edges of the fibres to be seen. The next step was an extension to a rhomboid shape, cutting fibres at depth to avoid later relapse and retraction of the tissue. The fibres and excessive tissue were removed. Almost no bleeding occurred during surgery, enabling a clear view for the surgeon and making the procedure fast. No further coagulation was necessary. No sutures were required. A swab was placed for 30 seconds at the end of the laser treatment. The compliance of the patient during treatment was very good.

No painkillers and no antibiotics were prescribed. The patient’s post-operative instructions were to take no milk products, no alcohol, no smok-
ing, no caffeine and no theine for the day, and not to participate in sports that day. The lip should be left down and cooled. The teeth should be brushed as always. Repeat visits after one day, six days and four months.

Postoperative findings after one day showed no complications. No bleeding, no pain and no swelling appeared. The healing process was very fast, showing fibrine coating after one day and good vascularisation. There was slight scarriing after four months. The spacing reduced by about 1.5 mm incisally. The patient was referred back to the orthodontist.

__Conclusion__

Laser-assisted dental surgery has benefits compared with conventional treatment methods: selective, minimally invasive, less traumatic, and less pain. There was almost no bleeding and therefore a good, clear view for the surgeon during the treatment.

The bactericidal and biostimulating effect of the laser resulted in very good and rapid healing. The advantages for this patient were obvious: less post-operative pain, no swelling. In addition, no sutures were necessary and a further appointment for suture removal was not needed.

The compliance and acceptance of the child was high. Laser-assisted frenectomy in pediatric dentistry following the Laserkids clinical procedure is a gentle treatment option._

__References__

__contact__

Gabriele Schindler-Hultzsch, MSc, DDS
Münchenerstraße 16
86551 Aichach
Germany
Tel.: +49 8251 7070
Fax: +49 8251 1820
E-mail: schindler@laserkids.de
Use of the Er,Cr:YSGG and Er:YAG lasers in restorative dentistry

Introduction

In 1989, Keller and Hibst illustrated the potential of the Er:YAG laser (2.94 µm wavelength) for the effective ablation of dental hard tissues. As a result, there was new development and marketing of free-running, mid-infrared wavelength lasers during the 1990s. Such laser wavelengths were complementary to target tissue elements, enabling clinically significant ablation rates that did not cause pulpal or collateral thermal injury when using proper energy levels. The erbium chromium YSGG (2,780 nm) and the erbium YAG (2,940 nm) laser wavelengths are well absorbed by water and hydroxyapatite contained at different component rates in hard tissue and appeared to offer safe use in cavity preparation.

The vaporization of interstitial water provided by the Er,Cr:YSGG and Er:YAG lasers results in an explosive dislocation of target hard tissue. These laser wavelengths offer several advantages for restorative dentistry, including precision, selective ablation of target hard tissue and carious lesions, less conductive thermal stimulation of the pulp, reduced collateral damage that might result from rotary instrumentation (such as tactile and thermal damage), and so forth.

This article examines the principles for using the Er,Cr:YSGG and Er:YAG lasers in clinical restorative dentistry.
No Pre-Registration Fee

2011
87th Annual Session

Greater New York Dental Meeting™

Scientific Meeting:
Friday, November 25 -
Wednesday, November 30

Exhibits:
Sunday, November 27 -
Wednesday, November 30

The Largest Dental Meeting/Exhibition/Congress in the United States
dentistry and reviews the literature concerning different aspects of laser energy on hard tissues.

**Basic considerations**

Using a laser requires delivering light energy of sufficient value to effect tissue change without causing unwanted collateral thermal damage by conducting excess heat into the surrounding tissues.6 To do this, it is essential to establish a rate of interaction that is commensurate with a time frame that enables such interaction to be clinically acceptable in terms of total time required for each procedure.

The rate and the speed of dental hard tissue ablation depends on the appropriate laser energy, in addition to the wavelength, pulse duration, pulse shape, repetition rate, power density, thermal relaxation time of the tissue, and delivery mode.6–8

The speed of ablation is also affected by the fluoridation of the tissue, the presence of ablation products and the incident angle of the delivery tip relative to the tooth: Placing the delivery tip parallel to the axis of the enamel prisms, in order to access the interprismatic, higher-water content structure maximises the speed of ablation. Ablation is more efficient and heat transfer is minimized when the pulse width is reduced and peak power values rise.9–11

In addition, the use of sharp curettes to remove gross caries can reduce laser use to an acceptable time frame. The depth of laser ablation depends on the parameters utilized, principally on the energy used per pulse and the number of pulses delivered. To avoid and prevent cracks or structural modifications, the tip (where present) must not touch the surface, nor should excessive energy be applied. When relatively high fluences are involved, it is possible that the laser light is absorbed by the mineral, which results in ablation and/or disruption of the mineral with some structural modification.12–14

Many conflicting factors interfere with the recommended power value for laser-assisted ablation of dental hard tissue. The ablation threshold of human enamel has been reported to be in the range of 12–20 Joules/cm² for dentin, 8–14 Joules/cm² for the Er:YAG and Er,Cr:YSGG laser wavelengths. For an average laser delivery spot-size, using a free-running pulsed emission mode, this may equate to approximately 150–250 mJ/pulse.

It is recommended that the clinician follow manufacturer’s guidelines in establishing laser treatment protocols for a given laser, keeping in mind the differing operating parameters of air/water/spot size and any power losses that may occur within differing delivery systems.

**Use of co-axial water spray**

The use of water spray with mid-infrared lasers enables working on hard tissues with thermal increases of less than 5 degrees Celsius: It is essential to prevent debris from accumulating at the bottom of the cavity, which can lead to conductive heat damage.15–16

The effects of excessive incident power, the build-up of ablation products, which cause thermal damage to the target and surrounding tissue, and the removal of such products by means of a co-axial water spray, have been discussed in the literature.17–21 The affinity of mid-infrared laser wavelengths with water contained in the tissue enables selective ablation, in which greater absorption takes place in demineralised tissue, which is richer in organic material and has a higher percentage of water. This absorption
offers some protection to the sound underlying tissue while reducing penetration from the beam. To prevent build-up, ablation products should be removed by means of a co-axial water spray. If water spray is not used, laser light is then absorbed by the mineral and the hydroxyapatite crystal themselves may be heated above their melting point.

In consequence, either some disruption of the crystal structure occurs with subsequent resolidification in a different form, or direct ablation of the mineral occurs, but there also is conductive heat transfer to interstitial free water. Relatively high fluorences are needed at these wavelengths for this transfer of heat to occur. A micro-cavitated surface that may enhance retention of composite resin can be achieved by using Er,Cr:YSGG or Er:YAG lasers to irradiate enamel and dentin but water spray must be utilized.

Conversely, the absence of water spray can lead to cracks in enamel or melted dentin, resulting in un-substained enamel prisms and flat adhesion dentin surfaces with closed tubules. The negative effects could lead to marginal leakage and non-adhesion of the composite material.

Exceptions to using water spray

There are two clinical situations that can be treated with lasers without the simultaneous use of a co-axial water spray: desensitizing technique and pulp capping. The desensitizing technique must be done without water and without the laser tip making direct contact with the tooth.

In addition, the laser should be used for a short time only and with low power (few pps, very long release time, few mJ). For pulp capping, the technique must be carried out without water but with air-cooling and the tip must touch the surface for only a few seconds.

Cavity margin considerations

A succession of studies has identified the fragility of laser-irradiated enamel, relative to the stability of the post-restoration margins. Studies have proposed a combined approach of laser-irradiation and acid-etch techniques to overcome such potential problems. It may be necessary to remove grossly overhanging and unsupported enamel with a rotary bur, scalpels or an ultrasonic device to expedite cavity preparation or provide a stable post-restoration margin.22–27

Acid–etch considerations

Er:YAG laser irradiation produces a surface visually similar to an acid-etch pattern but without a smear layer. While the surface produced by the Er:YAG laser is similar to the conventionally prepared, etched enamel surface, it still requires acid etching to obtain an equivalent bond strength. The use of acid etching for enamel and dentin surface modification must be carried out each time before bonding application.

Laser irradiation of enamel is not a valid alternative to acid-etching pre-treatment for resin composite materials adhesion. As a result, Er,Cr:YSGG and Er:YAG irradiation alone cannot be recommended as a viable alternative to acid etching.28, 29

Avoidance of dehydration

Before bonding application, the dentin surface must not be dehydrated: The use of lasers without
water-mist before composite restorations is no longer recommended. Laser ablation does not produce a smear layer, which would impede adhesion to laser-irradiated surfaces. Nevertheless, a selective ablation of organic tissue occurs when these lasers are used; as a result, there is less collagen left to be exposed — or hybridized — after laser conditioning of dentin, indicating that acid-etching and water-spray after laser treatment is advisable.30, 31

Choice of composite restorative materials

The choice of composite materials must be made on the basis of the depth and width of dentin craters. The laser irradiation of enamel and dentin by Er,Cr:YSGG or Er:YAG lasers results in a “super-rough,” micro-cavitated surface that may predispose to ideal retention of composite resin but it is necessary to remember this difference from laser to bur in the choice of materials. The use of composite nano or micro-filled is fundamental to properly restore laser ablated cavities. Whenever possible, it is advisable to first use a layer of flowable composite. The seal at enamel margins in Er,Cr:YSGG and Er:YAG lased cavities depends on the resin composite formulation of the corresponding adhesive.32, 33

Isolation and safety considerations

A rubber-dam isolation technique must be used in every procedure to maintain decontamination provided by the laser. Safety measures should include the use of specific protection glasses for the doctor, the assistant and patient — and the use of appropriate facemasks to avoid plume aspiration, high-speed aspiration of plume and debris. In addition, the dentist must use non-reflecting instruments. Magnification is recommended to improve the dentist’s control of his or her work.

Summary

The Er,Cr:YSGG laser has an active medium of yttrium-scandium-gallium-garnet doped with erbium and chromium ions and emits free-running pulsed laser energy at a wavelength of 2,780 nm. The Er:YAG laser has an active medium of yttrium-aluminium-garnet doped with erbium ions and emits free-running pulsed laser energy at a wavelength of 2,940 nm. These wavelengths have a high absorption in water, which makes their application appropriate when ablating oral soft tissue as well as dental hard tissue.

Advantages of using these laser wavelengths in restorative dentistry include precision, selective ablation of target hard tissue and carious lesions, reduced collateral damage that might be caused by rotary instrumentation (tactile and thermal damage), less conductive thermal stimulation of the pulp, no vibrations, and so forth.

However, it is essential to apply knowledge and accepted laser settings and modes of application and to follow the clinical aspects and rules to obtain the best results. Using these lasers and co-axial water spray simultaneously is always advisable, with the two clinical exceptions of the desensitising technique and pulp capping.

Other main points to consider are the cavity margins that need to be finished, the use of acid after laser treatment that permits the best adhesion, and the choice of composite materials, which must be based on the surfaces produced by the laser treatment. Specific safety is necessary when using these devices._

Editorial note: The complete literature list is available from the author.

Giuseppe Iaria, Prof Dr, DMD, DDS
University of Genoa, Italy
Via S. Eustaccio, 19
25128 Brescia, Italy
E-mail: iariagiuseppe@virgilio.it
ANNUAL DENTAL TRIBUNE STUDY CLUB
SYMPOSIA AT THE GNYDM
NOVEMBER 27TH – 30TH, 2011, STARTING AT 10:00 AM DAILY

For the fourth year in a row, Dental Tribune Study Club hosts its annual C.E. Symposia at the GNYDM, offering four days of focused lectures in various areas of dentistry. Find us on the exhibition floor in aisle 6000!

Each day will feature a variety of presentations on topics, which will be led by experts in that field. Participants will earn CE credits for each lecture they attend. DTSC is the official online education partner of GNYDM.

PLEASE SEE PROGRAM DETAILS UNDER WWW.DTSTUDYCLUB.COM/GNYDM

REGISTER NOW: WWW.GNYDM.COM

ATTENDEES MUST PRE-REGISTER AS GNYDM VISITORS FOR FREE.

SUNDAY, NOVEMBER 27
10:00 - 11:00 DR. HOWARD GLAZER // COURSE NO. 3789
GOMERS: NEW GIANTS OF MI DENTISTRY

11:15 - 12:15 DR. SHAMSUDIN KHARANI // COURSE NO. 3790
COMPREHENSIVE DENTISTRY USING DIGITAL IMPRESSION TECHNOLOGY

12:45 - 1:45 DR. ION KAMINER // COURSE NO. 3800
MINIMALLY INVASIVE DENTISTRY: TIPS AND TRICKS TO MAXIMIZE SUCCESS

2:00 - 3:00 DR. LOUIS MA SHACKNER // COURSE NO. 3011
THE HOTTEST TOPICS IN DENTISTRY

3:15 - 4:15 TBA // COURSE NO. 3820
TECHNOLOGY TO IMPROVE YOUR CARES MANAGEMENT

4:30 - 5:30 DR. GEORGE FREEDMAN // COURSE NO. 3830
EVOLVING CONSERVATIVE RESTORATIONS

MONDAY, NOVEMBER 28
10:00 - 11:00 DR. FAY GOLDSTEN // COURSE NO. 4679
WHAT PATIENTS WANT... WHAT DENTISTS WANT:
EASY, HEALTHY DENTISTRY!

11:15 - 12:15 DR. DAMIEN MULLANY // COURSE NO. 4700
WHY VIEW YOUR 3D PATIENTS WITH 2D IMAGES? A COMMON SENSE APPROACH TO 3D IMAGING IN THE GENERAL PRACTICE

12:45 - 1:45 DR. LARRY EMMOTT // COURSE NO. 4690
REMEMBER WHEN "E" WAS JUST A LETTER? E-SERVICES TO IMPROVE PATIENT CARE AND INCREASE PROFITABILITY

2:00 - 3:00 DR. GEORGE FREEDMAN AND DR. FAY GOLDSTEN // COURSE NO. 4700
DIODE LASER AND RESTORATIVE DENTISTRY

3:15 - 4:15 DR. SHAMSUDIN KHARANI // COURSE NO. 4710
LASER DENTISTRY OVERVIEW WITH AN UPDATE ON CLOSED FLAP OSSICLES

4:30 - 5:30 DR. MARY JABLOW // COURSE NO. 4720
UNDERSTANDING THE ADVANCES IN SELF-ADHESIVE TECHNOLOGY AND HOW TO INCORPORATE THEM INTO YOUR RESTORATIVE PRACTICE

TUESDAY, NOVEMBER 29
16:00 - 17:00 DR. GREGORI KURTZMANN // COURSE NO. 5690
CORE BUILDUPS, POST & CORES AND UNDERSTANDING FERRUL

11:15 - 12:15 TBA // COURSE NO. 5700
THE IMPORTANCE OF THE FLAP DESIGN IN RELATION TO THE TYPE OF THE UNDERLYING BONE DEFI

12:45 - 1:45 DR. GEORGE FREEDMAN AND DR. FAY GOLDSTEN // COURSE NO. 5710
THE DIODE LASER: THE ESSENTIAL SOFT TISSUE HANDPIECE

2:00 - 3:00 DR. SELMA CAMARGO // COURSE NO. 5720
LASERS IN ENDODONTICS: CLINICAL APPLICATION FOCUS ON DIFFICULT CASES

3:15 - 4:15 DR. STANLEY MALEWID AND DR. MIC PALKER // COURSE NO. 5730
LOCAL ANESTHETIC PERFORMANCE: FICTION, FACT AND ADVANCES (PRECISION BUMPING)

4:30 - 5:30 DR. MARIUS STEGEMANN // COURSE NO. 5730
MY FIRST ESTHETIC IMPLANT CASE - WHY, HOW, & WHEN!

WEDNESDAY, NOVEMBER 30
10:00 - 11:00 DR. MARIUS STEGEMANN // COURSE NO. 6680
MY FIRST ESTHETIC IMPLANT CASE - WHY, HOW, & WHEN!

11:15 - 12:15 DR. GEORGE FREEDMAN AND DR. PAT ROETZER // COURSE NO. 6016
CEMENTING ALUMINA AND ZIRCONIA RESTORATIONS

12:45 - 1:45 DR. ION KAMINER AND DR. ARVIN NEJAD: MINIMALLY INVASIVE IMPLANT DENTISTRY FOR THE GENERAL PRACTITIONER

2:00 - 3:00 DR. DAVID HOLZER
PLUS MANY MORE PREMIUM IMPLANTOLOGY LECTURES...

*THIS PROGRAM IS SUBJECT TO CHANGE

For more information, please contact:
Julia E. Wehkamp, C.E. Director, Dental Tribune Study Club
Phone: (416) 907-8836, Fax: (212) 244-7185
E-mail: jwehkamp@DTStudyClub.com
Diode-laser-assisted combination therapy of a lip haemangioma

Author_Georg Bach, Dr med dent

As a general rule, haemangioma, also referred to as a "blood sponge," is a broader term for many different vascular abnormalities. The treatment of haemangiomas, especially in dental practice, requires a clear distinction between congenital vascular tumours and vascular malformations.

Congenital vascular haemangiomas are relatively rare in dental practice. They occur in babies and toddlers and show a typical three-phase course: The initial phase is often marked by massive growth ("proliferation phase"), and the subsequent remission phase is then followed by an obligatory regression ("regression phase"). The typical three-phase clinical course usually enables a unique differentiation from a malformation, which contrary to congenital haemangiomas, is often encountered in dental practice and affects primarily the lip area.

A multitude of possible treatment options is mentioned for treatment of a vascular malformation of the lip.

Surgical treatment
Owing to intra-surgical complication rates (haemorrhaging), which are the exception to the rule today, surgery is only carried out in special clinics, especially if functional disruptions are expected because of a rapidly growing haematoma and non-surgical treatments do not promise success.

Fig. 1. Equipment needed for creating an ice-block: toothpick, rubber bands, fibre holder and cut-off bottom portion of a single-serving yogurt container.

Fig. 2. To prevent the fibre-holding channel from icing up, its end is sealed with sticky wax, which can also be used for placement on the bottom of the plastic container.

Fig. 3. To affix the fibre holder securely, it is stabilized with rubber bands and a toothpick, which serves as a holding strip.

Fig. 4. The container is filled with water.

Fig. 5. An ice-block with a fibre holder is molded in the freezer.
AAID 60th Annual Meeting
REALITIES OF IMPLANT DENTISTRY
STACKING THE DECK IN YOUR FAVOR

AMERICAN ACADEMY OF IMPLANT DENTISTRY
OCTOBER 19-22, 2011
LAS VEGAS

www.aaid.com
Fig. 6. Hemangioma on right half of lower lip.

Fig. 7. The fibre can be pushed through the fibre channel in the ice-block to the lip haemangioma that requires treatment.

Fig. 8. Pre-surgical cooling around the haemangioma using an ice-block without a fibre holder.

Modified surgical procedure according to Prof. H. Deppe:
- tapping of the haemangioma;
- aspiration of the blood;
- injection of polyether impression material;
- hardening of the material; then
- surgical removal of the haemangioma into which the impression material has been injected with considerably reduced intra-surgical haemorrhaging.

Cryotherapy
This treatment is usually successful in haemangiomas with a thickness of up to 5 mm, with very few side effects. However, cryotherapy for the lip is the subject of controversial discussion because of the risk of scar formation.

Laser-assisted treatment
Nd:YAG and diode lasers are primarily used here; isolated cases of treatment with yellow-light and argon lasers are also described in the literature. Medication (corticosteroids, in some cases also cytostatics) often used in the treatment of other haemangiomas is not relevant in the case of lip haemangiomas.

This report describes a combination treatment consisting of pre-surgical cooling and intra-surgical diode-laser use with simultaneous cooling with an ice-block into which the fibre is directed.

Goal
Diode lasers are the most common dental lasers in German dental clinics and dental clinics worldwide. These lasers are used primarily and very successfully for combating biofilm in the treatment of peri-implantitis, marginal periodontitis and endodontics.

Diode-laser light with a wavelength of 810 nm is absorbed extremely well by dark surfaces and thus also by blood. Use of a diode laser for the treatment of haemangiomas in an ideal situation, that is, with controlled thermal coagulation, would thus be conceivable. Reports on treatment with other laser wavelengths (Nd:YAG, CO2, Argon and yellow-light lasers), which have been used for treating haemangiomas for years, often mention tissue necrosis and post-surgical complications after laser treatment. These consequences are undesirable for tissue in aesthetically relevant areas, which most certainly include the lips, and are viewed critically by patients.

The central idea of the treatment of lip haemangiomas with diode-laser-assisted therapy is to combine the excellent absorption of diode-laser light with a wavelength of 810 nm and simultaneous cooling with an ice-block in order to keep the side-effects described to a minimum or, ideally, to prevent them.

Making a combination ice/fibre-holding block
The ice-block should be an ideal size and shape. Based on our experience, this can easily be achieved by using the cut-off bottom portion of a single-serving drinkable yogurt container as a mould for the ice-block. In order to direct the fibre through this ice-block, a disposable fibre holder (diameter must fit the fibre to be inserted) must be placed with the aid of a toothpick and rubber bands in such a way that it is centred and in contact with the bottom of the container.

The container is then filled with water and placed in a freezer to freeze the block. A second (and possibly third) ice-block without a fibre holder should be created for the pre-surgical "cooling phase," which should occur approximately 10 minutes prior to the laser treatment. The block’s bulbous form conforms ideally to the shape of the lips.

Clinical application
Prior to the laser-assisted treatment, small amounts of local anaesthetic (approximately 8 x 0.1 ml) are injected around the haemangioma. The number of areas in which anaesthetic is injected can be reduced slightly in the case of smaller haemangiomas (this treatment is not suitable for very large lip haemangiomas).

Immediately after the local anaesthetic, the ice-block without fibre is used to cool the area for 10 minutes (if possible, covering the entire haemangioma). The ice-block is then exchanged, the ice-block with the integrated fibre holder is placed onto the haemangioma, fitting as closely as possible, and the laser fibre is then pushed through. Fibres with a diameter of 400 µm have proven to be suitable for this application; they are
ICOI World Congress XXVIII

6~9 October, 2011 | Coex, Seoul, Korea

- Congress Co-Chair: Dong-Seok Sohn (Korea), Carl E. Misch (USA)
- ICOI President: Hom-Lay Wang (USA)
- ICOI Korea President: Chong-Yeon Shin
- Program Chair: Su-Gwan Kim (Korea)
- ICOI Co-Chair: Kenneth W.M. Judy (USA), Carl E. Misch (USA)

Invited Speakers

* In alphabetic order

- Carl Misch (USA)
- Chen Zhuofan (China)
- Douglas Deporter (Canada)
- Erika Benavides (USA)
- Giulio Rasperini (Italy)
- Hom-Lay Wang (USA)
- Hyun Jun Jeon (Korea)
- Jim Yuan Lai (Canada)
- Keith Doonan (Australia)
- Kunihiko Teranishi (Japan)
- Kyeong-An Joe (Korea)
- Kyoo-Sung Cho (Korea)
- Marius Steigmann (Germany)
- Maurice Salama (USA)
- Mitsuhiro Tsukiboshi (Japan)
- Mohammad Ketabi (Iran)
- Myron Nevins (USA)
- Myung-Jin Kim (Korea)
- Pablo Galindo-Moreno (Spain)
- Scott Ganz (USA)
- Shih-Chang Tweng (Taiwan)
- Shiota Makoto (Japan)
- Stephen Chu (USA)
- Tae-ju Oh (Korea)
- Trakol Mekayarajjananonth (Thailand)
- Tulio Valcanaia (Brazil)
- William Giannobile (USA)
- Yoshiharu Hayashi (Japan)

* partial list of speakers
a good compromise between the achievable surface effect and minimum tissue trauma.

In the subsequent application of the laser, the fibre penetrates the lip surface and is inserted into the haemangioma up to a maximum of 5 mm. Ideally, the final position of the fibre will be in the centre of the haemangioma surface. After a 10-second application of the laser, the fibre is removed and the position of the ice-block adjusted a little; then the same procedure is followed on a different, untreated area of the haemangioma. Treatment is completed when all areas of the haemangioma have been treated.

It is recommended that a second ice-block with fibre holder be available as a backup to ensure that the haemangioma is constantly and perfectly covered. During treatment, the patient is covered with absorbent sheets to catch the melting water from the ice-block running from the lip to the ventral area.

Laser parameters

A diode laser that uses high pulse or digital pulse technology (elexxion) and emits laser light with a wavelength of 810 nm was used for combination treatment of a lip haemangioma. Pulse performance is 30 W at a frequency of 20,000 Hz with a pulse duration of 16 µs.

Conclusion

The combination treatment presented here, which entails simultaneous cooling during the use of a laser for treatment of a lip haemangioma, is a high-quality alternative to established procedures.

Its application is fairly simple and the advantage is that there are only minimal post-surgical complaints (minimal pain or swelling, very little scarring). Laser-assisted treatment of a lip haemangioma using a diode laser has distinct advantages compared with lasers with other wavelengths for treatment of medium-sized and small haemangiomas. The application of diode lasers is limited in the case of extensive haemangiomas.

The prevalence of diode lasers in dental, oral, and maxillofacial surgical clinics supports the availability of this treatment.
‘Ride the Wave to Success in Dentistry’

Do you have plans for Jan. 25–29, 2012? Well you will after reading what Yankee Dental Congress 2012 has to offer next January at the Boston Convention and Exhibition Center. With over 300 educational courses and over 450 exhibitors, all of your needs for dental education will be met as we “Ride the Wave to Success in Dentistry.”

Yankee will be sure to make a splash with these highlights:

• **Scottsdale of the East** — Leading clinicians from the renowned Scottsdale Center for Dentistry will present programs in esthetic, restorative and CAD/CAM dentistry over two full days.

• **Madow Brothers** — Rock ‘n’ roll dentists David and Richard Madow will give their high-powered, Las Vegas-style presentation for the first time at Yankee. A must see for the whole team!

• **Disney Institute** — Chris Caracci, a lead healthcare consultant from the Disney Institute, will present practice management and real customer service, the Disney way.

• **Opening Keynote Speaker** — New this year, you will be inspired by the words of Dick Hoyt, who has competed in road races worldwide with his wheelchair bound son, Rick, including 30 Boston Marathons. Join us for an uplifting presentation Thursday morning followed by breakfast on the show floor. Admission to this event is free to all.

• **Face Transplant Pioneer** — Dr. Daniel Alam, chief of facial esthetics and reconstructive surgery at the renowned Cleveland Clinic, will present a behind-the-scenes look and follow-up of the first ever successful face transplantation performed in the United States.

• **Team Development Day** — A new twist to this popular program will feature working through a day of not-so-typical patients, highlighting varied medical histories, emergency situations and unique clinical challenges, all with the guidance and help of experts in each field.

The following will be back by popular demand:

• **Live Dentistry** — See all-new, cutting-edge procedures performed on live patients.

• **Expanded High-Tech Playground** — Touch and try all the new gadgets at your pace without any sales pressure.

• **Free Lunch on the Exhibit Hall Floor** — Now on Saturday, Jan. 28. Have a bite to eat while talking shop with 450-plus exhibitors.

Registration and housing are open. Be sure to register early; more than 40 percent of the educational courses sold out last year.

If you register four or more dental professionals from your office, the fifth person will go for free (some restrictions apply). Visit www.yankeedental.com for details.
NV Microlaser

NV Microlaser delivers the full capabilities of much larger desktop soft-tissue lasers in a cordless, pen-sized package. Weighing only 1.9 ounces and completely self-contained, a laser has never been this easy to use — and numerous design and clinical awards are the proof.

NV is activated by a wireless foot pedal, providing better flexibility and mobility than hand-activated lasers, while allowing unobstructed access and visibility with posterior procedures without loss of dexterity or finger fatigue. NV uses disposable fiber tips that are prescored and prescribed to virtually eliminate setup time. Precisely placed magnets perfectly align and secure the pre-threaded fiber tips every time.

The first of its kind, NV remains the smallest, lightest diode laser in the world and is proudly backed by Philips Discus Dental’s world-class customer service and support.

Every NV includes a full day, hands-on certification course to ensure successful implementation of laser technology into your practice and comes with everything you need to start lasing right out of the box.

Experience all the benefits of soft-tissue laser technology without any additional clutter or cords.

For more information, please call (800) 217-8822 or visit www.discusdental.com.
submissions: formatting requirements

Please note that all the textual elements of your submission:
- the complete article,
- all the figure captions,
- the complete literature list and
- contact info (bio, mailing address, e-mail address, etc.)

must be combined into one text document. Please do not submit multiple files for each of these items.

In addition, images (tables, charts, photographs, etc.) must not be embedded in the text document. All images must be submitted separately, and details about how to do this appear below.

If you are interested in submitting a C.E. article, contact us for additional instructions before you make your submission.

Text length

Article lengths can vary greatly — from a mere 1,500 to 5,500 words — depending on the subject matter. Our approach is that if you need more or less words to do the topic justice then please make the article as long or as short as necessary.

We can run an extra long article in multiple parts, but this is usually discussing a subject matter where each part can stand alone because it contains so much information. In addition, we do run multi-part series on various topics.

In short, we do not want to limit you in terms of article length, so please use the word count above as a general guideline and if you have specific questions, please do not hesitate to contact us.

Text formatting

Please use single spacing and un-indented paragraphs for your text. Please do not put a blank line between paragraphs.

We also ask that you forego any special formatting beyond the use of italics and boldface, and make sure that all text is left justified.

If you would like to emphasize certain words within the text, please only use italics (do not use underlining or a larger font size). Boldface is reserved for article headers.

Please do not “center” text on the page, add special tab stops or use underlining, as all of this must be removed before layout. If you require a special layout, please let the word processing program you are using help you to do this formatting rather than doing it by hand on your own.

If you need to make a list or add footnotes or endnotes, please let the word processing program do it for you automatically. There are menus in every program that will help you to do this.

The fact is that no matter how careful one might be, errors have a way of creeping in when you try to hand number footnotes and literature lists.

Image requirements

Please number images consecutively throughout the article by using a new number for each image. If it is imperative that certain images are grouped together, then use lowercase letters to designate the images in a group (i.e., Fig. 2a, Fig. 2b, Fig. 2c).

Please put figure references in your article wherever they are appropriate, whether that is in the middle or end of a sentence but before the period.

If you are not directly mentioning the figure in the body of your article, when it appears at the end of the sentence the figure reference should be enclosed within parenthesis and appear before the final period.

In addition, please note:
- We require images in TIF or JPEG format.
- These images must be no smaller than 4 x 4 inches in size at 300 DPI.
- Images cannot be any smaller than 80 KB in size (or they will print the size of a postage stamp).

Larger images are always better, and something on the order of 1 MB is best. Thus, if you have an image that is greater than 1 MB, please do not bother “sizing it down” to meet our requirements, but send us the largest file size available.

The larger the starting image is in terms of bytes, the more leeway the designer has in terms of resizing the image to fill up more space should there be room available.

Also, please remember that you should not embed the images into the body of the text document you submit. Images must be submitted separately from the textual submission.

You may submit images through a zipped file via e-mail, unzipped individual files via e-mail or post a CD containing your images directly to us (please contact us for the mailing address as this will depend upon where in the world you will be mailing them from).

Please do not forget to send us a head shot photo of yourself that also fits the parameters above so that it can be printed along with your article.

Abstrats

An abstract of your article is not required. However, if you choose to provide us with one, we will print it in a separate box.

>Contact info_

At the end of every article is a contact info box with contact information along with a head shot of the author.

Please note at the end of your article the exact information you would like to appear in this box and format it according to the previously mentioned standards.

A short bio (60 words or less) may precede the contact info if you provide us with the necessary information.

Questions? Comments?

Please do not hesitate to contact us for our International C.E. Magazine Author Kit or if you have other questions/comments about the article submission process:

Group Editor Robin Goodman
r.goodman@dental-tribune.com

Managing Editor Fred Michmershuizen
f.michmershuizen@dental-tribune.com
Dental Tribune America is the official media partner of:

laser

the international C.E. magazine of laser dentistry

U.S. Headquarters
Dental Tribune America
116 West 23rd Street, Ste. 500
New York, NY 10011
Tel.: (212) 244-7181
Fax: (212) 244-7185
feedback@dental-tribune.com
www.dental-tribune.com

Publisher
Torsten R. Oemus
t.oemus@dental-tribune.com

Chief Operating Officer
Eric Seid
e.seid@dental-tribune.com

Group Editor
Robin Goodman
r.goodman@dental-tribune.com

Managing Editor
Fred Michmershuizen
f.michmershuizen@dental-tribune.com

Designer
Kristine Coiker
k.coiker@dental-tribune.com

Designer
Sierra Rendon
s.rendon@dental-tribune.com

C.E. Director
Julia Wehkamp
j.wehkamp@dtsstudyclub.com

C.E. International Sales Manager
Christianne Ferret
c.ferret@dtsstudyclub.com

Marketing Manager
Anna Wlodarczyk-Kataoka
a.wlodarczyk@dental-tribune.com

Marketing Assistant
Lorrie Young
l.young@dental-tribune.com

Accounting
Melissa Chan
m.chan@dental-tribune.com

List Manager
Christopher Ceparano
database@dental-tribune.com

Product/Account Manager
Mark Eisen
m.eisen@dental-tribune.com

Product/Account Manager
Humberto Estrada
e.estrada@dental-tribune.com

Product/Account Manager & Interactive
Gina Davison
g.davison@dental-tribune.com

International Product/Account Manager
Jan Agostaro
j.agostaro@dental-tribune.com

Copy Editor
Oberhofer and Thorsten Kleinert

Opinions expressed by authors are their own and do not necessarily reflect those of Dental Tribune America and its employees.

Dental Tribune America does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, New York.

laser

Copyright Regulations

The international C.E. magazine of laser published by Dental Tribune America is printed quarterly. The magazine’s articles and illustrations are protected by copyright. Reprints of any kind, including digital mediums, without the prior consent of the publisher are inadmissible and liable to prosecution. This also applies to duplicate copies, translations, microfilms and storage and processing in electronic systems. Reproductions, including excerpts, may only be made with the permission of the publisher.

All submissions to the editorial department are understood to be the original work of the author, meaning that he or she is the sole copyright holder and no other individual(s) or publisher(s) holds the copyright to the material. The editorial department reserves the right to review all editorial submissions for factual errors and to make amendments if necessary.

Dental Tribune America does not accept the submission of unsolicited books and manuscripts in printed or electronic form and such items will be disposed of unread should they be received.

Dental Tribune strives to maintain the utmost accuracy in its clinical articles. If you find a factual error or content that requires clarification, please contact Group Editor Robin Goodman at r.goodman@dental-tribune.com. Opinions expressed by authors are their own and may not reflect those of Dental Tribune America and its employees.

Dental Tribune cannot assume responsibility for the validity of product claims or for typographical errors. The publisher also does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, New York.

laser

Managing Editor
Fred Michmershuizen
f.michmershuizen@dental-tribune.com

Marketing Assistant
Lorrie Young
l.young@dental-tribune.com

Accounting
Melissa Chan
m.chan@dental-tribune.com

List Manager
Christopher Ceparano
database@dental-tribune.com

Product/Account Manager
Mark Eisen
m.eisen@dental-tribune.com

Product/Account Manager
Humberto Estrada
e.estrada@dental-tribune.com

Product/Account Manager & Interactive
Gina Davison
g.davison@dental-tribune.com

International Product/Account Manager
Jan Agostaro
j.agostaro@dental-tribune.com

Copy Editor
Oberhofer and Thorsten Kleinert

Opinions expressed by authors are their own and do not necessarily reflect those of Dental Tribune America and its employees.

Dental Tribune America does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, New York.

laser

Copyright Regulations

The international C.E. magazine of laser published by Dental Tribune America is printed quarterly. The magazine’s articles and illustrations are protected by copyright. Reprints of any kind, including digital mediums, without the prior consent of the publisher are inadmissible and liable to prosecution. This also applies to duplicate copies, translations, microfilms and storage and processing in electronic systems. Reproductions, including excerpts, may only be made with the permission of the publisher.

All submissions to the editorial department are understood to be the original work of the author, meaning that he or she is the sole copyright holder and no other individual(s) or publisher(s) holds the copyright to the material. The editorial department reserves the right to review all editorial submissions for factual errors and to make amendments if necessary.

Dental Tribune America does not accept the submission of unsolicited books and manuscripts in printed or electronic form and such items will be disposed of unread should they be received.

Dental Tribune strives to maintain the utmost accuracy in its clinical articles. If you find a factual error or content that requires clarification, please contact Group Editor Robin Goodman at r.goodman@dental-tribune.com. Opinions expressed by authors are their own and may not reflect those of Dental Tribune America and its employees.

Dental Tribune cannot assume responsibility for the validity of product claims or for typographical errors. The publisher also does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, New York.

laser

Managing Editor
Fred Michmershuizen
f.michmershuizen@dental-tribune.com

Marketing Assistant
Lorrie Young
l.young@dental-tribune.com

Accounting
Melissa Chan
m.chan@dental-tribune.com

List Manager
Christopher Ceparano
database@dental-tribune.com

Product/Account Manager
Mark Eisen
m.eisen@dental-tribune.com

Product/Account Manager
Humberto Estrada
e.estrada@dental-tribune.com

Product/Account Manager & Interactive
Gina Davison
g.davison@dental-tribune.com

International Product/Account Manager
Jan Agostaro
j.agostaro@dental-tribune.com

Copy Editor
Oberhofer and Thorsten Kleinert

Opinions expressed by authors are their own and do not necessarily reflect those of Dental Tribune America and its employees.

Dental Tribune America does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, New York.

Dental Tribune strives to maintain the utmost accuracy in its clinical articles. If you find a factual error or content that requires clarification, please contact Group Editor Robin Goodman at r.goodman@dental-tribune.com. Opinions expressed by authors are their own and may not reflect those of Dental Tribune America and its employees.

Dental Tribune cannot assume responsibility for the validity of product claims or for typographical errors. The publisher also does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, New York.

laser

Copyright Regulations

The international C.E. magazine of laser published by Dental Tribune America is printed quarterly. The magazine’s articles and illustrations are protected by copyright. Reprints of any kind, including digital mediums, without the prior consent of the publisher are inadmissible and liable to prosecution. This also applies to duplicate copies, translations, microfilms and storage and processing in electronic systems. Reproductions, including excerpts, may only be made with the permission of the publisher.

All submissions to the editorial department are understood to be the original work of the author, meaning that he or she is the sole copyright holder and no other individual(s) or publisher(s) holds the copyright to the material. The editorial department reserves the right to review all editorial submissions for factual errors and to make amendments if necessary.

Dental Tribune America does not accept the submission of unsolicited books and manuscripts in printed or electronic form and such items will be disposed of unread should they be received.

Dental Tribune strives to maintain the utmost accuracy in its clinical articles. If you find a factual error or content that requires clarification, please contact Group Editor Robin Goodman at r.goodman@dental-tribune.com. Opinions expressed by authors are their own and may not reflect those of Dental Tribune America and its employees.

Dental Tribune cannot assume responsibility for the validity of product claims or for typographical errors. The publisher also does not assume responsibility for product names or statements made by advertisers.

The responsibility for advertisements and other specially labeled items shall not be borne by the editorial department. Likewise, no responsibility shall be assumed for information published about associations, companies and commercial markets. All cases of consequential liability arising from inaccurate or faulty representation are excluded. General terms and conditions apply, and the legal venue is New York, New York.
We search for the best worldwide!

The **GLOBAL DENTAL TRIBUNE AWARDS** will celebrate excellence in dentistry. We will recognise outstanding individuals and teams that have made a unique and substantial contribution to improving dental care, whether in clinical practice, health policy, dental education, dental research or the dental industry.

Nominees will be chosen by a global audience of over 650,000 dental professionals, all readers of the Dental Tribune newspapers, which are published in more than 25 languages worldwide.

All dental professionals are invited to submit their applications, which will be taken to an online voting by their peers. Shortlisted candidates will be judged by a jury of the most renowned opinion leaders in their respective categories. The awards ceremony will be held in New York City at the end of this year, filled with all the glitz and glamour of a red carpet event.

For preregistrations and more information please go to:

awards.dental-tribune.com
Exceptional Value.

Visit us at ADA to learn about our exclusive show specialists! Booth #3455

Your Choice of Strippable Fiber or Disposable Tips

AMD LASERS is the only laser company that offers you the choice between traditional strippable fiber or the convenience of bendable disposable tips. Providing you improved control and access during treatment.

Convenient Laser Certification

AMD LASERS provides laser certification with every purchase of a Picasso laser. Certification is offered through DVD, online, and hands-on training. With all of these training options available, we make laser certification more convenient for you.

Available When You Need Us

Our helpful customer service and technical support team is available from 8 a.m. to 8 p.m. EST. Our increased service hours ensure that someone is available to help you when you need it most.

Picasso Provides Value to Your Practice.

AMD LASERS offers innovative technology, world-class educational solutions, customer service, and support. We offer you everything you need to provide state-of-the-art treatment to your patients with the award-winning Picasso line of soft-tissue dental lasers that are synonymous with high-performance, ease of use, and affordability.

Call 866.999.2635 to find out more on how Picasso can add value to your practice.